

STRUCTURAL CALCULATIONS

Venetia Valley Elementary School Restroom Addition

SAN RAFAEL, CALIFORNIA

TABLE OF CONTENTS

Section	Page	DSA Re-submittal
Intent of Calculations	i.	
Description of Project	ii.	<u> </u>
Loads & Design Information	A1	<u> </u>
Gravity Framing	B1	
Lateral Framing	C1	_ √ _
Foundations	D1	<u> </u>
Miscellaneous	E1	<u> </u>

Prepared for:

SVA Architects

MAY 19th, 2023

DESCRIPTION OF PROJECT

This project includes adding a single-story restroom to the Ventia Valley elementary school in San Rafael, California.

The structure has a gable roof supported by 2x10 joists spaced at 24" o.c. A single glulam beam ridge beam is supporting the joists. The gable roof has a 5' long overhang. Roof is supported by wood stud walls along the perimeter.

Exterior wood shear walls are the main lateral force resisting system in the structure in both directions.

The structure is supported on 18" wide x 24" deep grade beams along the perimeter of the building.

A1 - LOADS & DESIGN INFORMATION

A - 1

(415) 989-1004 FAX (415) 989-1552

 Venetia Valley Restroom
 by:
 rk
 sheet no:

 date:
 date:
 job no:

 2200173
 2200173.00

Rev. No. 120.05

DESIGN CRITERIA

Design conforms to the Caliornia Building Code, 2022 Edition.

LIVE LOADS			
Roofs (flat)		20	psf
WIND ANALYSIS			
Basic Wind Speed	V _{3S} =	92	mph (ASCE 7-16 Figure 26.5)
Exposure Category	=	С	(ASCE 7-16 Section 26.7.3)
Internal Pressure Coefficient	GC _{pi} =	0.18	(ASCE 7-16 Table 26.13-1)
SEISMIC ANALYSIS			
Static Lateral Force Procedure			
Risk Category	=	II	(ASCE 7-16 Table 1.5-1)
	=		(ASCE 7-16 Section 20.3) (ASCE 7-16 Section 20.3)
Importance Factor	I _e –	1.0	(ASCE 7-16 Table 1.5-2)
Long Direction			
Long Direction Lateral System		Bearing	Wall: Light-frame (wood) walls sheathed with
Deepenee Medifier	D –	wood str	Cuctural panels rated for shear resistance
Response Modifier	к- 0. =	0.0	(ASCE 7-10 Table 12.2-1)
Oversitengin Factor	32 ₀ –	3	(ASCE 7-10 Table 12.2-1)
Short Direction			
Short Direction Lateral System		Bearing	Wall: Light-frame (wood) walls sheathed with
Deepenee Medifier	D _ '	wood str	Cuctural panels rated for shear resistance
Overstrength Easter	к- 0. =	0.0	(ASCE 7.10 Table 12.2-1)
Oversiteingin Factor	32 ₀ –	3	(ASCE 7-10 Table 12.2-1)
Site Coefficients			
Short Period Spectral Acceleration	S _S =	1.500	g
Spectral Acceleration at 1 sec.	S ₁ =	0.600	g
Short-Period Site Coefficient	F _a =	1.20	
Long-Period Site Coefficient	$F_v =$	1.7	
Design Parameters			
Short-Period Spectral Acceleration	S _{DS} =	1.200	g
Long-Period Spectral Acceleration	S _{D1} =	0.680	g
Seismic Analysis Procedure:	Equiv. Lat Hand Cale	teral For culation	ce Procedure (ELF) - ASCE7 Sec 12.8

A - 2

			sheet no:
Venetia Valley Restroom	by:	rk	
	date:		
SVA			job no:
	2200173		2200173.00
			Rev. No. 120.05

FOUNDATION CRITERIA

Reference: CBC2022 - TABLE 1806.2

AT GRADE

Maximum Soil Pressure:			
Dead	1,500	psf	
Dead + Live	1,500	psf	
Dead + Live + Lateral	1,800	psf	
Passive Earth Pressure:			
Equivelent Fluid Weight	100	pcf	(FS=1.5)
Coefficient of Friction:	0.35		(FS=1.5)

Consulting Engi	ineers	project: Venetia Valley Restroom	by:	rk
45 Fremont Street, 2	28th Floor	location:	date:	09/12/22
San Francisco, California, 94105		client: SVA		
(415) 989-1004 FAX (415) 989-1552				2200173.00
(410) 505-1004 - 140 (410) 505-1002				Rev. No. 120.05
EQUIVALENT LATERAL FOR	CE PROCEDU	RE CBC 2022 & ASCE 7-16, Section 12.8:		
Input Data:				
Risk Category =	II	(ASCE 7 Table 1.5-1)		
Importance Factor, I _e =	1.00	(ASCE 7 Table 1.5-2)		
Soil Site Class =	D	Default (No Soils Report) ASCE 7	Ch. 20.3 Tal	ole 20.3-1
Site Latitude & Longitude	38.001° N	-122.52484 Coordinates based on site address		
Spectral Accel., $S_s =$	1.500	g (Geotech Report or USGS Hazard Maps)		
Spectral Accel., $S_1 =$	0.600	g (Geotech Report or USGS Hazard Maps)		
Structure Height, $\Pi_n =$	13.750			
No. of Seisfill' Levels –	۱ ۸15	ASCE Table 12.2.1		
Long-Period Trans T. =	12			
Eundamental Period T =	Ν/Δ	sec, ASCET Tig. 22-14		
Seismic force-resisting system	= Bearing Wall	Light-frame (wood) walls		
sheathed with wood structural p	anels rated for	shear resistance (ASCE		
Table 12.2-1)				
Site Coefficients:				
Ground Motion Procedure	Code Sp	ASCE 7 Sec 11.4.8		
Short-period factor, $F_a =$	1.2	ASCE 7 Table 11.4-1 Fa=1.2 min per ASCE7 S	ec 11.4.4	
Long-period factor, $F_v =$	1.7	ASCE 7 Table 11.4-2		
Maximum Spectral Response	Accelerations	S:		
S _{MS} =	1.800	$S_{MS} = F_a S_s$ (ASCE Eqn. 11.4-1)		
S _{M1} =	1.020	S _{M1} = F _v S ₁ (ASCE Eqn. 11.4-2)		
Design Spectral Response A	ccelerations f	or Short and 1-Second Periods :		
S _{DS} =	1.200	$S_{DS} = 2/3 S_{MS}$, ASCE Eq. 11.4-3		
S _{D1} =	0.680	S _{D1} = 2/3 S _{M1} , ASCE Eq. 11.4-4		
		For using Code Spectrum, T = S / S ASCE	7 800 11 1 (2
Calculate Ts:	0.567	For using Code Spectrum: $T_s = S_{D1} / S_{DS}$, ASCE	7 Sec 11.4.6	5
Governing Period, I =	0.143	sec, $I = I_a \leq I_{max}$ (ASCE 12.8.2), see calcs belo	W	
§11.4.8 to use Code Spectrum: 5	Tree D - Period I	≤ 1.51 S: CS = Eqn. 12.8-2		
Site-Specific Spectrum Exception.	Exception 2a	Code-Spectrum Permitted. ASCE7-10 Sec 11.4.6		
Seismic Design Category:				
Category (based on Spc) =	D	ASCE Table 11 6-1		
Category (based on S_{D1}) =	D	ASCE Table 11.6-2		
Category $(S_1 > 0.75) =$	 N.A.	ASCE Section 11.6		
Sec 11.6 condition triggered?	No			
Seismic Design Category =	D	Governed by the most critical of all category cas	ses above	
Fundamental Period:				
Period Coefficient, C _t =	0.020	ASCE Table 12.8-2 for "All other structural syste	ems"	
Period Exponent, x =	0.75	ASCE Table 12.8-2 for "All other structural syste	ems"	
Approx. Period, $T_a =$	0.143	sec, $T_a = C_t h_n^x$ (ASCE Eq. 12.8-7)		
Upper Limit Coef., $C_u =$	1.400	ASCE Table 12.8-1		
Period max., T _{max} =	0.200	sec, $T_{max} = C_u T_a$ (ASCE 12.8.2)		
Fundamental Period, T =	0.143	sec, $I = I_a \le I_{max}$ (ASCE 12.8.2)		
	0			
	COETTICIENTS:	ASCE Table 12.2.1		
$ \begin{array}{c} \hline \\ \hline $	C.0 2	AOUE TABLE 12.2-1 ASCE Table 12.2-1 (See note difer flevible dien)	hraama)	
Defl Amplif Factor $C =$	3		magms)	
Ca (Short Period) -	4 0 195	$C_{0} = S_{00}/(R/I) \Delta SCE Eq. (12.8.2) \text{page 80}$		
	0.100	$C_{s} = S_{p,1}/(R/I)*T)$ for $T < T_{c} (A S C F E a - 12 R S C)$	n 101)	
$C_{-}(T > T_{-}) =$	N/A	$C_{2} = S_{2} * T_{1} / ((R/I) * T^{2})$ for T > T_ (ASCE Eq. 12.6-3,	R-4 n 101	
C_{c} (SSS alternate) =	N/A	$C_{s \text{ observed}} = \text{Site-Specific } S_{-/(R/I)} \text{ per ASCF Sec.}$	21.4	I
C _c (min) =	0,053	$C_{S min} = 0.044S_{DS}$ or $0.5*S_1/(R/I)$ if $S_1 \ge 0.6\sigma$ (Fo	a. 12.8-5&6	p. 101)
$C_{s}(\$11.4.8 \text{ exception}) =$	0,185	Exception 2a for Site D - Period T \leq 1.5Ts Cs =	Egn. 12.8-2	2
Use: C _s =	0.185	$C_{S,min} \le C_S \le C_{S,max}, C \ge 0.01$		

C1 - LATERAL FRAMING

Consulting Engineers	project:	by:	sheet no: C - 2
45 Fremont Street, 28th Floor	location:	date:	
San Francisco, California 94105	client:		job no:
(415) 989-1004 FAX (415) 989-1552			
			Rev. No. 120.05

Number of seismic of Levels =	1
Total Structure Height, h _n =	13.75
Seismic Base Shear Coefficient, C _s =	0.185

= W	60	kips	(ASCE 7-16 Section 12.7.2)
W*C _S = V =	11.1	kips	LRFD
0.7*W*C _S = V =	8	kips	ASD

		story	story	uniform	area	added	total
level	floor type	heights (ft)	heights (ft)	loads (psf)	(ft ²)	loads (k)	weight (k)
1	Roof	13.75	13.75	51	1184		60
Σ=		13.75					60

VERTICAL DISTRIBUTION OF LATERAL SEISMIC FORCE

Base Shear = 8 kips

Consulting Engineers	project:	by:	sheet no: C - 3
45 Fremont Street, 28th Fl	oor location:	date:	
San Francisco, California 94105	client:		job no:
(415) 989-1004 FAX (415) 989-1552			
			Rev. No. 120.05

Fundamental Period, T = 0.143 sec

Vertical Distribution of Seismic Forces:

Distribution Exponent, k = 1.00 k = 1 for T ≤ 0.5 sec., k = 2 for T ≥ 2.5 sec.

Linear interpolation: k = (2-1)*(T-0.5)/(2.5-0.5)+1, for 0.5 sec. < k < 2.5 sec.

Lateral Force at Any Level: $F_x = C_{vx}^*V$, ASCE 7 Eq. 12.8-11 (p. 72)

Vertical Distribution Factor: $C_{vx} = W_x * h_x^k / (\Sigma W_i * h_i^k)$, ASCE 7 Eq. 12.8-12 (p. 73)

Diaphragm Design Forces:

 $C_{px,max} = 0.480$ $C_{px,max} = 0.4*S_{DS}*I$, ASCE 7 Eq. 12.10-3 (p. 75)

 $C_{px,min} = 0.240$ $C_{px,min} = 0.2^*S_{DS}^*I$, ASCE 7 Eq. 12.10-2 (p. 75)

Vertical Distribution Factor: $F_{px} = (\Sigma F_i / \Sigma W_i) * w_{px}$, ASCE 7 Eq. 12.10-1 (p. 75)

Seismic	h	h, ^k	Weight, W _x	W _v *h ^k	C _{vr}	Shear, F _x	Σ Story	Cnx	Fnx
Level x	(ft.)	(ft.)	(kips)	(ft-kips)	(%)	(kips)	Shears	(%)	(kips)
1	13.75	13.75	60	824	100%	7.7	8	13%	14
									-
_								1	1
Σ=			60	824	1.000	7.74			

Consulting Engineers	project:	
45 Fremont Street, 28th Floor	location:	
San Francisco, California 94105	client:	
(415) 989-1004 FAX (415) 989-1552		

SHEAR WALL DESIGN

Plywood Sheathing

Level	F _x	Area, A _x
(ft)	(kips)	(ft ²)
1	8	1184

EW DIRECTION

		Trib Area	F _{x, zone}	V _{x, zone}	L_{wall}	$V_{wall, ASD}$	Shear Wall	Wall	DCR
Zone	Level	(ft ²)	(kips)	(kips)	(ft)	(plf)	Туре	Capacity	(%)
A-1	1	592	3.87	3.87	22.5	172	А	310	55%
A-2	1	592	3.87	3.87	18	215	A	310	69%

NS DIRECTION

		Trib Area	F _{x, zone}	V _{x, zone}	L _{wall}	$V_{wall, ASD}$	Shear Wall	Wall	DCR
Zone	Level	(ft ²)	(kips)	(kips)	(ft)	(plf)	Туре	Capacity	(%)
1	1	592	3.87	3.87	10	387	В	460	84%
2	1	592	3.87	3.87	10	387	В	460	84%

[ASD]

lasff			sheet no:
Consulting Engineers	project: Venetia Valley Restroom	by: rk	
45 Fremont Street, 28th Floor	location:	date:	
San Francisco, California 94105	client: SVA		job no:
(415) 989-1004 FAX (415) 989-1552			2200173

SHEAR WALL OVERTURNING CHECKS

Notes:

 ΣM_{OT} = Sum of overturning moments at story, ASD

 ΣM_{R} = Sum of resisting moments at story

 M_{NET} = net overturning moment using the LC: E - (0.6 -0.14 $S_{\text{DS}})^{*}\text{DL}$

T = resulting uplift: M_{NET}/L_{eff}

 $L_{w,\text{eff}}$ = Effective width of wall for resisting couple, taken as length of wall minus 2 ft

(1) Leff updated manually to account for gravity posts

 T_{LRFD} = calculated using LC: 1.4E - (0.9-0.2S_{DS})*DL, used for tiedown anchorage design

For a sample hand calculation of how the values in each row are calculated, see following pages.

EAST-WEST DIRECTION (X)

Shear Wall	H _{wall} (ft)	L _{wall} (ft)	v _{wali} (plf)	∑V _{WALL} (kip)	∑M _{OT} (k-ft)	Weight (plf)	Trib DL (plf)	∑M _R (k-ft)	M _{NET} (k-ft)	L _{w,eff} (ft)	T (kip)	T _{LRFD} (kip)
WA_1	13.8	22.5	172	3.9	53	234	42	70	23	20.5	1.1	1.4
WA_2	13.8	10.0	215	2.2	30	234	42	14	24	8.0	3.0	4.0

NORTH-SOUTH DIRECTION (Y)

Shear Wall	H _{wall}	L _{wall}	V _{wall}	ΣV_{WALL}	ΣMOL	Weight	Trib DL	∑M _R	M _{NET}	$L_{w,eff}$	Т	T _{LRFD}
oncar wan	(ft)	(ft)	(plf)	(kip)	(k-ft)	(plf)	(plf)	(k-ft)	(k-ft)	(ft)	(kip)	(kip)
W1_1	10.0	5.0	387	1.9	19	170	231	5	17	3.0	5.7	7.9
W1_2	10.0	5.0	387	1.9	19	170	231	5	17	3.0	5.7	7.9

Determined in other worksheets

S_{DS} = 1.20

Consulting Engineers	project:		
45 Fremont Street, 28th Floor	location:		
San Francisco, California 94105	client:		
(415) 989-1004 FAX (415) 989-1552			
			[ASD]

SHEAR WALL HOLDOWN & POST DESIGN

									Typ	Max DCR =	0.97	
Notes:							POST CAPACITY		ATS DOA	Reduction -	0.00	
S _{DS} = T _E =	1.20 resulting uplift: N	∕I _{NET} /L _{eff}					Post	Grade	Wall Thickness	L _e (ft)	C _{all} (Ibs)	T _{all} (Ibs)
T =	C _E gravity load,	using [LC10:	E-(0.6-0.14 S _{DS})	D]		< 27 ft	PSL 7 x 11 7/8 *	PSL 2.0E		25.8	30407	275583
C _E =	M _{OT} /L _{EFF}						PSL 7 x 9 1/2 *	PSL 2.0E	8x	25.8	24326	220466
C =	C _E + gravity load	l, max of [LC8:	(1+0.14 S _{DS})D+I	E]&[LC9: (1+0	0.14 S _{DS})D+0.75(L·	+E)]	PSL 7 x 7	PSL 1.8E		25.8	10391	140907
							PSL 5 1/4 x 11 7/8 *	PSL 2.0E		25.8	13913	206687
(1)	Seismic Load E	is at ASD level					PSL 5 1/4 x 9 1/2 *	PSL 2.0E	6x	25.8	11130	165350
(2)	Max DCR man	ually change	d to be higher t	han design D	CR.		PSL 5 1/4 x 7 *	PSL 1.8E		25.8	7863	105680
(3)	See following p	pages for Sim	pson Strong T	e Catalog								
						< 19 ft	PSL 5 1/4 x 11 7/8 *	PSL 2.0E		17.8	25902	211030
SST HOLDO	WN CAPACITY	Y ⁽³⁾					PSL 5 1/4 x 9 1/2 *	PSL 2.0E		17.8	20722	168824
	Model	Rod Dia.	Capacity	0.8*T _{all}	d _a		PSL 5 1/4 x 7 *	PSL 1.8E	6x	17.8	16305	107900
протурс	Woder	[in]	[lbs]	[kip]	[in]		6x12 *	No. 1	••••	17.8	17233	68310
HD-7	(2) HDU19	1 1/4	38720	30.976	0.180		6x10 *	No. 2		17.8	14236	56430
HD-6	(2) HDU14	1	28890	23.112	0.172		6x8 *	No. 2		17.8	11281	44550
HD-5	(2) HDU11	1	22350	17.880	0.137							
HD-4	(2) HDU8	7/8	15740	12.592	0.113	< 17.5 ft	PSL 5 1/4 x 11 7/8 *	PSL 2.0E		16.3	29261	212073
HD-3	HDU14	1	14445	11.556	0.172		6x12 *	No. 1	C v	16.3	20350	68310
HD-2	HDU11	1	11175	8.940	0.137		6x10 *	No. 2	ХO	16.3	16810	56430
HD-1	HDU8	7/8	7870	6.296	0.113		6x8 *	No. 2		16.3	13334	44550
			38140	30512.000			4x6		6x		7017	

EAST-WEST DIRECTION (X)

GRAVITY L			Y LOADS	COMPRESSION						TEN	ISION			Ĩ	
Shear Wall	Wall Thickness	Height	Add'l DL	Add'I LL	C _E [lbs]	C (lbs)	Post	DCR	T _E [kip]	T [kip]	d _{a;POST} [in]	INCLUDE DL?	HDU Type	DCR	NOTES
WA_1	6x	13.75			1197.3	1197.3	4x6	0.17	1.1	1.1	0.01	NO	HD-1	0.18	
WA_2	6x	13.75			295.6	295.6	4x6	0.04	3.0	3.0	0.02	NO	HD-1	0.47	

NORTH-SOUTH DIRECTION (Y)

			GRAVIT	Y LOADS		COMPF	RESSION				TEN	ISION			
Shear Wall	Wall Thickness	Height	Add'l DL	Add'l LL	C _E [kip]	C (kip)	Post	DCR	T _E [kip]	T [kip]	d _{a;POST} [in]	INCLUDE DL?	HDU Type	DCR	NOTES
W1_1	6x	10.5			96.8	96.8	4x6	0.01	5.7	5.7	0.02	NO	HD-1	0.91	

Consulting Engineers	project:	
45 Fremont Street, 28th Floor	location:	
San Francisco, California 94105	client:	
(415) 989-1004 FAX (415) 989-1552		

TIEDOWN ANCHORAGE DESIGN ACI318-19 Ch. 17

Tiedown anchors are sized using the ductile anchor method of ACI 318-14, 17.2.34.3 9(a)

INPUT:

f'c =	3	ksi	[Concrete Strength]	Anchor Steel Strength:	Pullout Strength:	Breakout Strength:
Fy =	36	ksi	[Anchor yield strength]	N _{sa} = Ae*Fu	$N_{pn} = \Psi_{c,p} * 8 * A_{brg} * fc$	Based on anchor reinforcement capacity
Fu =	58	ksi	[Anchor ultimate strength]		$A_{brg} = I_{washer}^2 - \pi \mathcal{O}_{A.B.}^2 / 4$	N _n = As*Fy
Fy,bar =	60	ksi	[Rebar yield strength]			
Φ =	0.75		[Breakout, Steel element]			
Φ =	0.70		[Pullout & Pryout]			

ANCHORAGE CHECKS:

	N	ua				Steel strength Pullout Strength			Breakout strength Ductility Check			:k			
	(k	ip)	Ø _{A.B.}	Plate Washer	No. of	Poinf #	N _{sa}	N / ΦN	N _{pn}	N _{ua} /	Nn	N / ΦN	(a)	(b)	(a)>(b)2
про туре	ASD	LRFD	(in)	(in)	Legs	Reini. #	(kip)	in _{ua} / ψin _{sa}	(kip)	ΦN _{pn}	(kip)	in _{ua} /φin _n	$N_{ua}/1.2N_{sa}$	N _{ua} /N _c	(a)~(b)?
HD-1	8	11	0.875	3	2	4	26.8	0.55	151.2	0.10	24.0	0.61	0.34	0.07	O.K.

PLATE WASHER CHECK: Check plate washer for bending

T _u = w =	11 3	kip in	$q_u = T_u/A_{brg} =$ $M_u = w^*q_uL^2/2 =$	1.3 2.01	ksi kip-in
t =	1	in	Φ =	0.9	
F _y =	36	ksi	$\Phi M_n = \Phi F y^* Z =$	24.3	kip-in
Ø _{A.B.} =	1	in			
A _{brg} =	8.21	in²	DCR =	0.08	OK
$L = (w-Ø_{A.B.})/2 = Z = w^{t^2}/4 =$	1.00 0.75	in in ³			

D1 - FOUNDATION

kpff

oundation Design		
Design Criteria	Building Dimension:	$L \coloneqq 34.8 \ \mathbf{ft} \qquad B \coloneqq 22.5 \ \mathbf{ft} H \coloneqq 12.5 \ \mathbf{ft}$
	Building Weight:	$W \coloneqq 60 \ kip$
- Cr La	Grade Beam Dimension:	$Bgb \coloneqq 1.5 \ ft$ $Dgb \coloneqq 2 \ ft$
	Slab on Grade Thickness:	$tslab \coloneqq 5$ in
Ó,	Concrete Property:	$f'c \coloneqq 3000 \ psi$ $\gamma c \coloneqq 150 \ pcf$
Seismic	Seismic Parameter:	$Sds := 1.2 \rho := 1.0 Cs := 0.185 \ \Omega o := 3$
	Base Shear:	$V_E \coloneqq 1 \cdot Cs \cdot W = 11.1 \ kip$
	Overturning Moment:	$M_E \coloneqq V_E \cdot H = 138.75 \ ft \cdot kip$
Seismic governs th	e design for foudnation.	
	Ű,	
		£
		*/2 */2
		°C,
		Ô,
		-75
		10
		i i i i i i i i i i i i i i i i i i i

kptt

Overturnning Seismic governs the design for overturning.

Consider the entire building as one unit

Min. effect ASD load combination (0.6 - 0.14Sds)D + 0.7E

 $OTM := 0.7 \cdot M_E = 97.125 \ kip \cdot ft$

Total weight of the building including foundation:

 $Ptotal := W + \gamma c \cdot ((2 \cdot L + 4 \cdot (B - Bgb)) \cdot Dgb \cdot Bgb + (B + Bgb) \cdot (L + Bgb) \cdot tslab) = 183.57 \ kip$

Resisting Moment

$$Mo := \left(0.6 - 0.14 \text{ Sds}\right) + Ptotal \cdot \frac{(B+Bgb)}{2} = 951.627 \text{ kip} \cdot \text{ft}$$
Factor of Safety against overturning moment:

$$FS := \frac{Mo}{OTM} = 9.798 \qquad \text{OK}$$

Factor of Safety against overturning moment:

$$FS \coloneqq \frac{Mo}{OTM} = 9.798$$

leaff					Page
KDII Consulting Engineers	Project:	Venetia Valley	By:	RK	D - 3
45 Fremont Street, 28th Floor			date:	5/15/2023	
Foundations design conform to California	Client:	SVA	Job No	o.: 2200173	}
(415) 989-1004 Fax (415) 989-1552			Rev. N	o. 121.01	

Gra = 1500 psf DL + LL CBC2022 - TABLE 1806.2

Late = 100 pcf

Late = 130 psf **Basic Load Combinations**

Footing Information

			Weight	60 kips
ocation F	oundation/Se	cond Floor		
arthquake Loads				
S _{DS} =	1.20	g	Seismic Design Spectral Ac	celeration
P _E =	7	kips	Vertical seismic force result	ant
P _{E,Dist.} =	12	ft	Horizontal distance from po	nt "a" to P _E +P _E
M _{E,PE} =	86	k-ft	(taken at Point a)	$\leftarrow P_{E,P_{ist,}}$
M _{Eh} =	53	k-ft	(taken at Point a)	P _{DL,LL} ▼
M _{E,Total} =	140	k-ft	(taken at Point a)	Dist.
oundation Dimen	sions			$\begin{pmatrix} & +M_{\rm Eh} \end{pmatrix}$

L_{ftg}

D

Foundation Dimensions

Component	Depth (ft)	Width (ft)	Length (ft)	Notes	
Footing	2.00	1.50	24.00		
Surcharge	1.00				Point "a"

Gravity Loads: Forces and Moments (D + L)

Load	Dead (k)	Live (k)	Dist. (ft)	Dead (k-ft)	Live (k-ft)	Notes		
Footing	11		12.00	130				
Surcharge	4		12.00	52				
Roof LL		1	12.00		6			
P ₁	5	4	13.25	66	52			
P ₂								
P ₃								
P ₄								
P ₅								
P ₆								
P ₇								
P ₈								
P ₉								
P ₁₀								
Sum	20	4		248	52	Sum excludes L _r		
Allowable Soil Bea	ring Pressures							
Soil density	ρ=	120	pcf CB	C2022 - TAE	BLE 1806.2	2		
Add displaced s	soil?	No	• -					
Loads	Q allow net	Q _{allow gross}	W/O addeo	d displaced soi	l (depth acc	ounted in q _{allow net})		
D + I	1500 psf	1500 psf	 	$d_{\text{cons}} = \mathbf{q}_{\text{collow}}$	· ·	(0.001),100		
	1500 per	1500 per	Mallow,gross — Mallow,net					
	1000 pai	1000 poi	a = a + (displaced soil ut/fta cros)					
			Yallow,gr	oss - Yallow,net -				
			Values for	q _{allow} obtained	trom soils re	eport		

			Page
KOII Consulting Engineers	Project: Venetia Valley	By: RK	D - 4
45 Fremont Street, 28th Floor		date: 5/15/2023	
Foundations design conform to California	Client: SVA	Job No.: 2200173	3
(415) 989-1004 Fax (415) 989-1552		Rev. No. 121.01	

Required Footing Width

Soil

 W_{reqd} = (if inside kern, e $\leq L_{ftg} / 6$)

$$W_{reqd} = \frac{R}{q_{allow} L_{fig}} \left(1 + \frac{6e}{L_{fig}} \right)$$
 (Eq. 1)

ASD Load Combinations for Soil Bearing

Load Combination 1: D (CBC 2022 Eq. 16-8)

	M _a =	248	kip-ft	Sum of the m	oments abo	out left end	b
	R =	20	kips	Factored load	reaction		
	x =	12.31	ft	Resultant loca	ation from le	eft end, x	= M _a / R
	e =	0.31	ft	Eccentricity, e	e = x - (L _{ftg} /	' 2)	
	e _{kern} =	4.00	ft	Kern distance	, e _{kern} = L _{ftg}	/ 6	
	Inside kern?	Yes		Resultant is ir	nside kern i	f e ≤ e _{kern}	
S	W _{reqd} = Sufficient width?	0.60 OK	ft	Required widt	h (see Eq.	1 and Eq.	2 above)
For W _{ftg} =	1.50	ft., q _{max} q _{min}	= 602 = 515	at dist. = at dist. =	24.00 0.00	ft ft	
oil pressure distribution		0	- 10	15	2	25 0	30
	-515					-602	

Load Combination 2: D + L (CBC 2022 Eq. 16-9)

M_a =

R =

x =

e =

e_{kern} =

W_{reqd} =

Inside kern?

Sufficient width?

299

24

12.46

0.46

4.00

Yes

0.74

οκ

kip-ft

kips

ft

ft

ft

ft

(if outside kern, $e > L_{ftg} / 6$) $W_{reqd} = \frac{2R}{3q_{ellow}(L-x)}$, or $\frac{2R}{3q_{ellow}x}$ (Eq. 2)

$$(x > L/2)$$
 $(x \le L/2)$

Check: οκ

Check:

-602

Sum of the moments about left end

Resultant location from left end, $x = M_a / R$

Required width (see Eq. 1 and Eq. 2 above)

Factored load reaction

Eccentricity, $e = x - (L_{ftg} / 2)$

Kern distance, $e_{kern} = L_{ftg} / 6$

Resultant is inside kern if $e \le e_{kern}$

ΟΚ

			(Paç	ge
15 Francest Otherst Ooth Flags	eers Pro	oject: \	/enetia vai	еу		By: RK	P -	5
45 Fremonic Street, 28th Floor Equindations design conform to C	alifornia <mark>Cli</mark>	ent: S				date: 5/15/20	J23 00173	
(415) 989-1004 Fax (415) 989-	1552	ent. c				Rev No. 121 (00173 01	
						1.00.110.121.		
Load Combination 3: D + I	Lr (CBC	2022 <u>E</u>	<u>ą. 16-10)</u>			Ch	eck:	ок
	M _a =	254	kip-ft	Sum of t	the moments ab	out left end		
	R =	21	kip	Factored	load reaction			
	x =	12.30	ft	Resultar	nt location from	left end, $x = N$	/I _a / R	
	e =	0.30	ft	Eccentri	city, $e = x - (L_{ftg})$	/ 2)		
	e _{kern} =	4.00	ft	Kern dis	tance, e _{kern} = L _{ft}	_g / 6		
Inside	kern?	Yes		Resultar	nt is inside kern	if e ≤ e _{kern}		
v	/ _{reqd} =	0.62	ft	Required	d width (see Eq.	1 and Eq. 2 a	above)	
Sufficient v	vidth?	ОК						
	_							
For $W_{ftg} = 1.50$	ft.	, q _{max}	= 616	at dist.	= 24.00	ft		
		\mathbf{q}_{min}	= 529	at dist.	= 0.00	ft		
<mark>⊢ 0 —</mark>			1	1	1	1 0]	
	2J		10	15	20	25	30	
distribution								
-529						_ -616		
								01/
Load Combination 4: D+0	J. / 5(L) + ()./5(Lľ)	(LBL 202	2 <u>Eq. 16-11)</u>		Ch	eck:	UK
	M. =	291	kin-ft	Sum of t	he moments ab	out left end		
	R =	23	kips	Factored	load reaction			
	x =	12.42	kips	Resultar	t location from	left end. x = N	/_/ R	
	e =	0.42	ft	Eccentri	$citv e = x - (l_{ex})$	/2)	a' '	
	e. =	1 00	ft	Kern dis	tance e = l.	/6		
Inside	korn2	4.00 Voc		Resultar	$t_{\rm the inclusion}$ t is include kern	g/O if a < a		
Inside	Kenn?	res		Resultar				
v	/	0.72	ft	Required	d width (see Ea	1 and Eq. 2 a	above)	
Sufficient v	vidth?	OK		i toquii ot	u muan (000 Eq.	- and Eq. 2 a		
For $W_{ftg} = 1.50$	ft.	, q _{max}	= 719	at dist. :	= 24.00	ft		
		q _{min}	= 582	at dist. :	= 0.00	ft		
_						- 0		
д "	Ω.		- 01	15 -	50	25 0	30	
Soll pressure			-	-			.,	
						710		
						/19		
Load Combination 8a: (1 +								
	<u>0.14 SDS)</u>	D + 0.7(<u>Eh) (CBC</u>	2022 <u>Eq. 16</u>	<u>-12)</u>	Ch	eck:	OK

M _a =	387	kip-ft	Sum of the moments about left end
R =	29	kips	Factored load reaction
x =	13.56	ft	Resultant location from left end, $x = M_a / R$
e =	1.56	ft	Eccentricity, $e = x - (L_{ftg} / 2)$

								Page
KOII Consul	ting Engineers	Project:	Veneti	ia Valley			By: RK	D - 6
45 Fremont Street, 28	8th Floor						date: 5/15/20	023
Foundations design c	onform to California	Client:	SVA				Job No.: 220	00173
(415) 989-1004 Fax	((415) 989-1552						Rev. No. 121.0)1
	e _{kern} =	4.00	ft		Kern distance	e, e _{kern} = L _{ft}	,/6	
	Inside kern?	Yes			Resultant is i	nside kern i	, fe≤ekam	
		100						
	W _{anad} =	1.10	ft		Required wid	th (see Fa	1 and Eq. 2 a	above)
s	Sufficient width?	OK			rtoquirou ma	ан (ооо шү.		
•		•						
For W _{ftg} =	1.50	ft., q _n	nax =	1102	at dist. =	24.00	ft	
5		Q,		483	at dist. =	0.00	ft	
	_	-11				0.00		
	0	0	-			-		
Soil pressure	4 <u>83</u>		1		1	Б	й У	30
distribution								
							-1102	
Load Combination	<u>n 8b: (1 - 0.14 SE</u>	<u>DS) D - 0.</u>	7(Eh)	(CBC 20	22 <u>Eq. 16-12)</u>		Che	eck: OK
	M _a =	108	kip	-ft	Sum of the m	noments ab	out left end	
	R =	12	kip	S	Factored load	d reaction		
	x =	9.26	ft		Resultant loc	ation from I	eft end, x = N	/l _a / R
	e =	-2.74	1 ft		Eccentricity,	e = x - (L _{fta}	/ 2)	
	e _{kern} =	4.00) ft		Kern distance	$e_{korn} = L_{fr}$./6	
	Inside kern?	Ves			Resultant is i	nside kern i	fe <e< td=""><td></td></e<>	
	maide kern:	163			Resultant is i			
	w . =	0 55	ft		Required wid	th (see Ea	1 and Eq. 2 a	above)
S	ufficient width?	0.00 OK			itequired wid	ш (зее шч.		10000)
		UN						
For W _{ftg} =	1.50	ft., q _m	_{nax} =	548	at dist. =	0.00	ft	
		a.		102	at dist =	24 00	ft	
	-0	4 r	nin	102		24.00		
Soil pressure	<u>o-548</u>	<u>له</u>			2	0		00
distribution			· ·		C			
Load Combination	n 9a: (1 + 0.105 S	SDS) D +	0.525(E	h) + 0.75	(L) (CBC 202	2 Eq. 16-1	4) Che	eck: OK
			-	-		-		
	M _a =	391	kip	-ft	Sum of the m	noments ab	out left end	
	R =	29	kip	S	Factored load	d reaction		
	x =	13.32	2 ft		Resultant loc	ation from I	eft end. x = N	/l₂ / R
	ο =	1 32	ft		Eccentricity	e = x - (l .	, (2)	a
		1.02	. n.		Korn distance		12)	
	e _{kern} =	4.00	π		Kern distance	e, e _{kern} = L _{ftç}	, / 6	
	Inside kern?	Yes			Resultant is i	nside kern i	t e ≤ e _{kern}	
	W _{reqd} =	1.08	ft		Required wid	th (see Eq.	1 and Eq. 2 a	above)
S	ufficient width?	OK						
		e .						
For W _{ftg} =	1.50	ft., q _m	_{nax} =	1084	at dist. =	24.00	ft	
		Q,		547	at dist. =	0.00	ft	

Consult	ina Enaineers	Project:					P '
5 Fremont Street 28	th Floor			,		date: 5/15/2	023
oundations design co	onform to California	Client:	SVA			Job No.: 22	200173
415) 989-1004 Fax	(415) 989-1552					Rev. No. 121.	01
0 11			1		1	0	
Soil pressure	ο -54 / ι	Ω	10		5		30
distribution							
oad Combination	<u>9b: (1 - 0.105 S</u>	<u>DS) D - 0.5</u>	25(Eh) + 0.7	5(L) (CBC 2022	2 Eq. 16-14	<u>)</u> Ch	eck: C
	M _a =	182	kip-ft	Sum of the m	noments ab	out left end	
	R =	17	kips	Factored load	d reaction		
	x =	10.88	ft	Resultant loc	ation from I	left end, x = I	M _a / R
	e =	-1.12	ft	Eccentricity,	e = x - (L _{ftg}	/ 2)	
	e _{kern} =	4.00	ft	Kern distance	e, e _{kern} = L _{ftc}	g / 6	
	Inside kern?	Yes		Resultant is i	nside kern i	, if e ≤ e _{kern}	
						Kenn	
S	W _{reqd} = ufficient width?	0.60 OK	ft	Required wid	lth (see Eq.	1 and Eq. 2 a	above)
	1 50	ft a	- 505	at diat –	0.00	£4	
FOI VV _{ftg} –	1.50	n., q _{max}	- 595	at dist	0.00	11 ()	
		q _{min}	= 334	at dist. =	24.00	TL .	
Soil prossure	605					$- \frac{0}{334}$	
Soli pressure	0-090			\	50	5	30
distribution			-0	~	50	201	30
distribution	<u>10a: (0.6)(D) + (</u> M _a =	0.7(Eh) (C 253	<u>BC</u> 2022 <u>E</u> €	q. 16-16) Sum of the n	∾ noments ab	Ch out left end	eck: C
distribution	<u>10a: (0.6)(D) + (</u> M _a = R =	<u>0.7(Eh) (C</u> 253 17	<u>₿C</u> 2022 <u>Eo</u> kip-ft kips	<u>q. 16-16)</u> Sum of the n Factored load	∾ noments ab d reaction	Ch out left end	eck: C
distribution	<u>10a: (0.6)(D) + (</u> M _a = R = x =	0.7(Eh) (C 253 17 14.80	BC 2022 Ed kip-ft kips ft	q. 16-16) Sum of the n Factored load Resultant loc	noments ab d reaction ration from l	Ch out left end left end, x = 1	eck: C
distribution	<u>10a: (0.6)(D) + (</u> M _a = R = x = e =	<u>0.7(Eh) (C</u> 253 17 14.80 2.80	BC 2022 Ed kip-ft kips ft	<u>q. 16-16)</u> Sum of the n Factored loar Resultant loc Eccentricity,	Noments ab d reaction ation from I e = x - (L _{ftg}	out left end left end, $x = 1$	eck: C
distribution	<u>10a: (0.6)(D) + (</u> M _a = R = x = e = e _{kern} =	0.7(Eh) (C 253 17 14.80 2.80 4.00	BC 2022 Ed kip-ft kips ft ft	<u>a. 16-16)</u> Sum of the n Factored load Resultant loc Eccentricity, Kern distance	noments ab d reaction eation from I $e = x - (L_{ftg})$ e, $e_{kem} = L_{ftg}$	out left end left end, $x = 1$ / 2)	eck: C M _a /R
oad Combination	<u>10a: (0.6)(D) + (</u> M _a = R = x = e = e _{kern} = Inside kern?	<u>0.7(Eh) (C</u> 253 17 14.80 2.80 4.00 Yes	BC 2022 Ed kip-ft kips ft ft ft	<u>a. 16-16)</u> Sum of the n Factored load Resultant loc Eccentricity, Kern distance Resultant is i	noments ab d reaction ration from I $e = x - (L_{fg})$ e, $e_{kern} = L_{fg}$ nside kern i	out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$	eck: C
oad Combination	<u>10a: (0.6)(D) + (</u> M _a = R = x = e = e _{kern} = Inside kern? W _{reqd} = Jfficient width?	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK	BC 2022 Ed kip-ft kips ft ft ft	g. 16-16) Sum of the n Factored load Resultant loo Eccentricity, Kern distance Resultant is i Required wid	noments ab d reaction eation from I e = x - (L _{ftg} e, e _{kern} = L _{ftg} nside kern i lth (see Eq.	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a	eck: C M _a / R above)
oad Combination	<u>10a: (0.6)(D) + (</u> M _a = R = x = e = e _{kern} = Inside kern? W _{reqd} = ufficient width?	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK	BC 2022 Ed kip-ft kips ft ft ft ft	<u>a. 16-16)</u> Sum of the n Factored load Resultant loc Eccentricity, Kern distance Resultant is i Required wid	noments ab d reaction ration from I e = x - (L _{fg} e, e _{kem} = L _{fg} nside kern i hth (see Eq.	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a	eck: C M _a / R above)
oad Combination Si Si For W _{ftg} =	<u>10a: (0.6)(D) + (</u> M _a = R = x = e = e _{kern} = Inside kern? W _{reqd} = ufficient width? 1.50	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max}	BC 2022 E kip-ft kips ft ft ft ft ft 142	<u>a. 16-16)</u> Sum of the n Factored load Resultant loc Eccentricity, Kern distance Resultant is i Required wid	noments ab d reaction eation from I e = x - (L _{ftg} e, e _{kern} = L _{ftg} nside kern i th (see Eq. 24.00	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a ft	eck: C M _a / R above)
oad Combination Si For W _{ftg} =	<u>10a: (0.6)(D) + (</u> M _a = R = x = e = e _{kern} = Inside kern? W _{reqd} = ufficient width? 1.50	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max} q _{min}	BC 2022 E kip-ft kips ft ft ft ft ft = 809 = 142	a. 16-16) Sum of the n Factored load Resultant loo Eccentricity, Kern distance Resultant is i Required wid at dist. = at dist. =	noments ab d reaction e = x - (L _{ftg} e, e _{kern} = L _{ftg} nside kern i lth (see Eq. 24.00 0.00	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a ft ft	eck: C
oad Combination oad Combination Si For W _{ftg} = Soil pressure distribution	10a: (0.6)(D) + (M _a = R = R = x = e = e _{kern} = Inside kern? W _{reqd} = ufficient width? 1.50	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max} q _{min}	BC 2022 Ed kip-ft kips ft ft ft ft ft = 809 = 142	a. 16-16) Sum of the m Factored load Resultant loo Eccentricity, Kern distance Resultant is i Required wid at dist. = at dist. =	homents ab d reaction tation from I e = x - (L _{ftg} e, e _{kern} = L _{ftg} nside kern i lth (see Eq. 24.00 0.00	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a ft ft ft 	eck: C M _a / R above)
Soil pressure distribution Si For W _{ftg} = Soil pressure distribution Oad Combination	10a: (0.6)(D) + (M _a = R = X = e = e _{kern} = Inside kern? W _{reqd} = ufficient width? 1.50 <u>0</u> : (0.6)(D) - 0	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max} q _{min}	BC 2022 Ed kip-ft kips ft ft ft ft = 809 = 142 C 2022 Ed	<u>a. 16-16)</u> Sum of the n Factored load Resultant loo Eccentricity, Kern distance Resultant is i Required wid at dist. = at dist. =	noments ab d reaction sation from I e = x - (L _{ftg} e, e _{kern} = L _{ftg} nside kern i lth (see Eq. 24.00 0.00	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a ft ft ft ft ft ft Ch	eck: C
oad Combination Solo pressure For W _{ftg} = Soil pressure distribution Oad Combination	$\frac{10a: (0.6)(D) + (0)}{M_a} = 0$ $R = 0$	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max} q _{min}	BC 2022 EC kip-ft kips ft ft ft ft ft 2022 EC 809 = 142 C BC 2022 EC kip-ft	a. 16-16) Sum of the n Factored load Resultant loo Eccentricity, Kern distance Resultant is i Required wid at dist. = at dist. =	noments ab d reaction ation from I e = x - (L _{ftg} e, e _{kern} = L _{ftg} nside kern i th (see Eq. 24.00 0.00	Ch out left end left end, x = N / 2) g / 6 if e ≤ e_{kern} 1 and Eq. 2 a ft ft ft 09 Ch out left end	eck: C
Soil pressure distribution oad Combination For W _{ftg} = Soil pressure distribution oad Combination	$\frac{10a: (0.6)(D) + (1)}{M_a} = R = R = R = R = R = R = R = R = R = $	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max} q _{min} 1.7(Eh) (Cl 44 7	BC 2022 EC kip-ft kips ft ft ft ft BC 2022 EC kip-ft kips	a. 16-16) Sum of the n Factored load Resultant loo Eccentricity, Kern distance Resultant is i Required wid at dist. = at dist. =	homents ab d reaction from I e = x - (L _{ftg} e, e _{kern} = L _{ftg} nside kern i lth (see Eq. 24.00 0.00	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a ft ft ft Ch out left end	eck: C
oad Combination oad Combination For W _{ftg} = Soil pressure distribution oad Combination	$\frac{10a: (0.6)(D) + 0}{M_a} = R = R = R = R = R = R = R = R = R = $	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max} q _{min} 7 .7(Eh) (Cl 44 7 6.24	BC 2022 Ed kip-ft kips ft ft ft ft ft BC 2022 Ed kip-ft kips ft	a. 16-16) Sum of the m Factored load Resultant loo Eccentricity, Kern distance Resultant is i Required wid at dist. = at dist. =	homents ab d reaction reation from I e = x - (L _{fg} e, e _{kem} = L _{fg} nside kern i lth (see Eq. 24.00 0.00	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a ft ft d - (2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a ft ft ft ft ft ft ft ft ft ft ft ft ft	eck: C M _a / R above) eck: C
oad Combination oad Combination For W _{ftg} = Soil pressure distribution oad Combination	$10a: (0.6)(D) + (0) = 0$ $M_{a} = R = R = R = R = R = R = R = R = R = $	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max} q _{min} .7(Eh) (Cl 44 7 6.24	BC 2022 EC kip-ft kips ft ft ft ft b EC 2022 EC kip-ft kips ft ft ft ft ft ft ft ft ft ft	a. 16-16) Sum of the n Factored load Resultant loc Eccentricity, Kern distance Resultant is i Required wid at dist. = at dist. =	homents ab d reaction ation from I e = x - (L _{ftg} e, e _{kern} = L _{ftg} nside kern i th (see Eq. 24.00 0.00	Ch out left end left end, x = N / 2) g / 6 if e ≤ e _{kern} 1 and Eq. 2 a ft ft ft 	eck: C M _a / R above) eck: C
Soil pressure distribution oad Combination For W _{ftg} = Soil pressure distribution oad Combination	$10a: (0.6)(D) + (0) = 0$ $M_{a} = R = R = R = R = R = R = R = R = R = $	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max} q _{min} 1.7(Eh) (Cl 44 7 6.24 -5.76 4.00	BC 2022 EC kip-ft kips ft ft ft ft 2022 EC kip-ft kips ft kips ft ft ft ft ft ft ft ft ft ft	a. 16-16) Sum of the m Factored load Resultant loo Eccentricity, Kern distance Resultant is i Required wid at dist. = at dist. = <u>to</u> 16-16) Sum of the m Factored load Resultant loo Eccentricity,	homents ab d reaction ration from I e = x - (L _{ftg} e, e _{kern} = L _{ftg} nside kern i lth (see Eq. 24.00 0.00	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a ft ft ft Ch out left end left end, $x = 1$ / 2)	eck: C M _a / R above) eck: C
Soil pressure distribution oad Combination For W _{ftg} = Soil pressure distribution oad Combination	$10a: (0.6)(D) + 0$ $M_{a} =$ $R =$ $x =$ $e =$ $e_{kern} =$ Inside kern? $W_{reqd} =$ ufficient width? 1.50 0042 1.50 $M_{a} =$ $R =$ $x =$ $e =$ $e_{kern} =$	0.7(Eh) (C 253 17 14.80 2.80 4.00 Yes 0.81 OK ft., q _{max} q _{min} 7 0.7(Eh) (Cl 44 7 6.24 -5.76 4.00	BC 2022 EC kip-ft kips ft ft ft ft BC 2022 EC kip-ft kips ft ft ft ft ft	a. 16-16) Sum of the m Factored load Resultant loo Eccentricity, Kern distance Resultant is i Required wid at dist. = at dist. = <u>to</u> 16-16) Sum of the m Factored load Resultant loo Eccentricity, Kern distance	homents ab d reaction reation from I e = x - (L _{fg} e, e _{kem} = L _{fg} nside kern i lth (see Eq. 24.00 0.00 $\sqrt{2}$	Ch out left end left end, $x = 1$ / 2) g / 6 if $e \le e_{kern}$ 1 and Eq. 2 a ft ft ft 	eck: C M _a / R above) eck: C

kpff

last			Page
KOII Consulting Engineers	Project: Venetia Valley	By: RK D	- 10
45 Fremont Street, 28th Floor		date: 5/15/2023	
Foundations design conform to California	Client: SVA	Job No.: 2200173	}
(415) 989-1004 Fax (415) 989-1552		Rev. No. 121.01	

<u>Gr</u> = 1500 psf DL + LL CBC2022 - TABLE 1806.2

Late = 100 pcf

Late = 130 psf Basic Load Combinations

Footing Information

Surcharge

Weight 60 kips Location Foundation/Second Floor **Earthquake Loads** $S_{DS} =$ Seismic Design Spectral Acceleration 1.20 g $P_E =$ 7 kips Vertical seismic force resultant $+P_{\rm E}$ P_{E,Dist.} = Horizontal distance from point "a" to P_E 18 ft $M_{E,PE}$ = (taken at Point a) 131 k-ft P_E $M_{Eh} =$ (taken at Point a) P_{DL,LL} 38 k-ft Dist. (taken at Point a) M_{E,Total} = 169 k-ft +M_{Eh} **Foundation Dimensions** Component Width (ft) Depth (ft) Length (ft) Notes Footing 2.00 1.50 36.50 D

Point "a"

L_{ftg}

Gravity Loads: Forces and Moments (D + L)

1.00

Load	Dead (k)	Live (k)	Dist. (ft)	Dead (k-ft)	Live (k-ft)	Notes
Footir	ng 16	. /	18.25	300	/	
Surcha	rge 7		18.25	120		
Roof I	L	1	18.25		9	
P ₁						
P ₂						
P ₃						
P ₄						
P ₅						
P ₆						
P ₇						
P ₈						
P ₉						
P ₁₀						
Sum	23	0		420	0	Sum excludes L _r
Allowable So	oil Bearing Pressures					
Soil dens	sity ρ =	120	pcf CB	C2022 - TAI	BLE 1806.	.2
Add disp	laced soil?	No				
Loads	q _{allow,net}	q _{allow,gross}	W/O addeo	displaced soi	l (depth acc	ounted in q _{allow,net})
D + L	1500 psf	1500 psf	q _{allow.ar}	$_{oss} = q_{allow,net}$		
D + L + F	E 1500 psf	1500 psf	With additi	onal displaced	soil increas	e
			q _{allow on}	$r_{oss} = q_{allow,net} +$	(displaced s	soil wt/ftg area)
			Values for	dallow obtained	from soils re	eport

			Page
KpII Consulting Engineers	Project: Venetia Valley	By: RK D	- 11
45 Fremont Street, 28th Floor		date: 5/15/2023	
Foundations design conform to California	Client: SVA	Job No.: 2200173	3
(415) 989-1004 Fax (415) 989-1552		Rev. No. 121.01	

Required Footing Width

 W_{reqd} = (if inside kern, e $\leq L_{ftg} / 6$)

$$W_{reqd} = \frac{R}{q_{allow}L_{fig}} \left(1 + \frac{6e}{L_{fig}}\right)$$
 (Eq. 1)

ASD Load Combinations for Soil Bearing

Load Combination 1: D (CBC 2022 Eq. 16-8)

M _a = R = x =	420 23 18.25	kip-ft kips ft	Sum of the moments about left end Factored load reaction Resultant location from left end, x = M _a / R
e =	0.00	ft	Eccentricity, $e = x - (L_{ftg} / 2)$
e _{kern} =	6.08	ft	Kern distance, e _{kern} = L _{ftg} / 6
Inside kern?	Yes		Resultant is inside kern if $e \le e_{kern}$
W _{reqd} = Sufficient width?	0.42 OK	ft	Required width (see Eq. 1 and Eq. 2 above)

For
$$W_{ftg}$$
 = 1.50 ft., q_{max} = 420 at dist. = 36.50 ft
 q_{min} = 420 at dist. = 0.00 ft
Soil pressure
distribution
-420 -420

Load Combination 2: D + L (CBC 2022 Eq. 16-9)

Check: ΟΚ

 $W_{reqd} = \frac{2R}{3q_{allow}(L-x)}$, or $\frac{2R}{3q_{allow}x}$ (x > L/2) $(x \le L/2)$

(if outside kern, $e > L_{ftg} / 6$)

Check: οκ

(Eq. 2)

1 ((1	Pa	ade
	Project	Vene	tia Vallev				Bv [.] R	к п- ′	12
45 Fremont Street. 28th Floor							date: 5/	15/2023	
Foundations design conform to Californ	ia Client:	SVA					Job No.:	2200173	
(415) 989-1004 Fax (415) 989-1552							Rev. No.	121.01	
Load Combination 3: D + Lr (CBC 202	² Eq. 16	<u>-10)</u>					Check:	ок
Ma	= 42	9 ki	n-ft	Sum of	f the mor	nents abc	out left er	nd	
R	= 2	s ki	D D	Factore	ed load re	eaction			
x	= 18.	25 ft	F	Resulta	ant locati	on from le	eft end, x	$= M_a / R$	
е	= 0.0	00 ft		Eccent	ricity, e =	• x - (L _{fta} /	2)	u	
ekora	= 6.0)8 ft		Kern di	istance. e	$e_{korn} = L_{ffg}$	/6		
Inside kern	? Ye			Resulta	ant is insi	de kern if	e < e		
	: 10	.5		rtoound				1	
W _{reqd} Sufficient width	= 0.4 ? Ol	3 ft K		Require	ed width	(see Eq. ′	1 and Eq	. 2 above)	
For $W_{ftg} = 1.50$	ft., o	a _{max} =	429	at dist.	=	36.50	ft		
		q _{min} =	429	at dist.	=	0.00	ft		
0			1	1	1	1	1		
ص م Soil pressure distribution	C t	2	15	20	25	30	35	40	
-429								-429	
Load Combination 4: D + 0.75(I	<u>_) + 0.75(</u>	Lr) (CE	3C 2022 <u> </u>	Eq. 16-11)	2			Check:	ОК
M _a	= 42	7 ki	p-ft	Sum of	f the mor	nents abc	out left er	nd	
R	= 23	3 ki	ps	Factore	ed load re	eaction			
х	= 18.	25 ki	ps	Resulta	ant locati	on from le	eft end, x	$= M_a / R$	
е	= 0.0	00 ft		Eccent	ricity, e =	• x - (L _{ftg} /	2)		
e _{kern}	= 6.0)8 ft		Kern di	istance, e	$e_{kern} = L_{fta}$	/ 6		
Inside kern	? Ye	S		Resulta	ant is insi	de kern if	[:] e ≤ e _{kern}	I	
W _{reqd} Sufficient width	= 0.4 ? Ol	3 ft K		Require	ed width	(see Eq. ′	1 and Eq	. 2 above)	
For $W_{e_1} = 1.50$	ft., o	a _{max} =	427	at dist.	=	36.50	ft		
1.00		a =	427	at dist.	=	0.00	ft		
		-i min							
r or m _{ing} 1.00		-111111	1	1	1	1	1	0	
	C	2	15 -	20 -	25 -	30 -	35 -	40	
م م الم Soil pressure	0	2 2	- 15 -	20 -	25 -	- 30	35 -	40_0	
Soil pressure distribution		2	15 -	20 -	- 25 -	30 -	35 -	0 9 -427	
م الم الم الم الم الم الم الم الم الم ال	0	2) -	15 -	20 -	- 25 -	30 -	35 -	0 04 -427	
Soil pressure distribution	Ç	2) 	15 -	20 -	25 -	30 -	35 -	-427	

M _a =	609	kip-ft	Sum of the moments about left end
R =	32	kips	Factored load reaction
x =	19.08	ft	Resultant location from left end, $x = M_a / R$
e =	0.83	ft	Eccentricity, $e = x - (L_{ftg} / 2)$

							Page
Consulti	na Engineers	Project:	(enetia Valley				10
45 Fromant Streat 29	hg Engineers		chetta valley			deter 5/45/0000	U-13
45 Fremont Street, 28	11 FIOOI nform to Colifornia	Client: C	•\/A			date: 5/15/2023	20
(A15) 080 1004 Eax	1110111110 Callio1111a (715) 080 1552	Client. 3	NA			JOD NO.: 22001	3
(415) 909-1004 Tax	(413) 909-1332					Rev. No. 121.01	
	e _{kern} =	6.08	ft	Kern distance	, e _{kern} = L _{ftg} ,	/ 6	
	Inside kern?	Yes		Resultant is in	side kern if	e ≤ e _{kern}	
	W _{read} =	0.66	ft	Required widt	h (see Eq. 1	and Eq. 2 abo	ve)
Su	ifficient width?	ок		·	ι, i	•	/
For W _{ffg} =	1.50	ft., q _{max}	= 662	at dist. =	36.50	ft	
ig		a .	= 503	at dist =	0.00	ft	
		Ymin	- 303		0.00	it.	
	0	1	I	1	1	0	
Soil pressure	ο v	10	15	20	30	32	40
distribution	-503					66	c
usubulon						-00	2
Load Combination	8b· (1 - 0 14 ST)S) D - 0 7/E	b) (CBC 20)	22 Ea 16-12)		Check	· 0K
		<u> </u>	<u>iii) (ODO</u> 20.	22 <u>Ly. 10-12</u>		Olleck	. 01
	N/ -	221	kin ft	Sum of the m	omonte abo	ut loft and	
	IVI _a –	231	кір-п		Sments abo		
	R =	14	kips	Factored load	reaction		_
	x =	16.36	ft	Resultant loca	ition from le	eft end, $x = M_a / M_a$	R
	e =	-1.89	ft	Eccentricity, e	$= x - (L_{ftg} /$	2)	
	e _{kern} =	6.08	ft	Kern distance.	$e_{kern} = L_{ftg}$	/ 6	
	Inside kern?	Ves		Resultant is in	side kern if	<u> </u>	
	Inside Kenti:	163		Resultant is in	Side Kerrin		
	\ A / _	0.04	E 4	D a su tina al trai alti)
	w _{reqd} =	0.34	π	Required width	n (see Eq. 1	and Eq. 2 abo	ve)
SL	ifficient width?	OK					
	4 50	6	_ 007	. 4 . 12 . 4	0.00	6 1	
For $vv_{ftg} =$	1.50	n., q _{max}	= 337	at dist. =	0.00	π	
		q_{min}	= 178	at dist. =	36.50	ft	
Sail proceure	0		I	1	1	· 0,-	70
Soli pressure	<u>φ ις</u>		<u></u>	25	30	33	⁴ 0
distribution	-337						
Load Combination	9a: (1 + 0.105 §	SDS) D + 0.5	<u> 25(Eh) + 0.75</u>	(L) (CBC 2022	<u>Eq. 16-14</u>) Check	: ОК
Load Combination	<u>9a: (1 + 0.105 §</u>	<u>SDS) D + 0.5</u>	<u> 25(Eh) + 0.75</u>	(L) (CBC 2022	<u>Eq. 16-14</u>) Check	: ок
Load Combination	<u>9a: (1 + 0.105 S</u> M _a =	<u>561 561 558 561 561 561 561 561 561 561 561 561 561</u>	25(Eh) + 0.75 kip-ft	(L) (CBC 2022 Sum of the mo	Eq. 16-14 oments abo) Check	: ОК
Load Combination	<u>9a: (1 + 0.105 S</u> M _a = R =	561 30	25(Eh) + 0.75 kip-ft kips	(L) (CBC 2022 Sum of the mo	<u>Eq. 16-14</u> oments abo) Check	: ОК
Load Combination	9a: (1 + 0.105 S M _a = R = v =	505) D + 0.5 561 30 18 92	25(Eh) + 0.75 kip-ft kips ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca	Eq. 16-14 oments abo reaction) Check ut left end	: OK
Load Combination	<u>9a: (1 + 0.105 S</u> M _a = R = x =	561 30 18.92	25(Eh) + 0.75 kip-ft kips ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca	Eq. 16-14 coments abo reaction tion from le) Check ut left end ft end, $x = M_a / C_b$: ок R
Load Combination	<u>9a: (1 + 0.105 \$</u> M _a = R = x = e =	505) D + 0.5 561 30 18.92 0.67	25(Eh) + 0.75 kip-ft kips ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e	Eq. 16-14 coments abo reaction tion from le $x = x - (L_{ftg} / L_{ftg})$) Check ut left end ft end, x = M _a / 2)	: ок R
Load Combination	9a: (1 + 0.105 \$ M _a = R = x = e = e _{kern} =	505) D + 0.5 561 30 18.92 0.67 6.08	25(Eh) + 0.75 kip-ft kips ft ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e Kern distance	Eq. 16-14 coments abo reaction tion from le $x = x - (L_{ftg} / r_{ftg})$) Check ut left end ft end, x = M _a / 2) / 6	: ок R
Load Combination	9a: (1 + 0.105 \$ M _a = R = x = e = e _{kern} = Inside kern?	505) D + 0.5 561 30 18.92 0.67 6.08 Yes	25(Eh) + 0.75 kip-ft kips ft ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e Kern distance Resultant is in	Eq. 16-14 coments abo reaction tion from le $x = x - (L_{ftg} / p_{kern} = L_{ftg})$ side kern if) Check ut left end ift end, $x = M_a / 2$ / 6 $e \le e_{kern}$: ОК R
Load Combination	9a: (1 + 0.105 \$ M _a = R = x = e = e _{kern} = Inside kern?	505) D + 0.5 561 30 18.92 0.67 6.08 Yes	25(Eh) + 0.75 kip-ft kips ft ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e Kern distance, Resultant is in	Eq. 16-14 coments abo reaction tion from le $x = x - (L_{ftg} / R_{ftg})$, $e_{kern} = L_{ftg}$ side kern if) Check ut left end ft end, x = M _a / 2) / 6 e ≤ e _{kern}	: 0K R
Load Combination	9a: (1 + 0.105 \$ M _a = R = x = e = e _{kern} = Inside kern?	505) D + 0.5 561 30 18.92 0.67 6.08 Yes	25(Eh) + 0.75 kip-ft kips ft ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e Kern distance, Resultant is in	Eq. 16-14 poments aboreaction tion from let $x = x - (L_{ftg} / R_{ftg})$ $x = k_{ftg}$ side kern if) Check ut left end ft end, $x = M_a / 2$ / 6 $e \le e_{kern}$: OK R
Load Combination	9a: (1 + 0.105 \$ M _a = R = x = e = e _{kern} = Inside kern? W _{reqd} =	505) D + 0.5 561 30 18.92 0.67 6.08 Yes 0.60	25(Eh) + 0.75 kip-ft kips ft ft ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e Kern distance Resultant is in Required width	Eq. 16-14 coments abo reaction tion from le $x = x - (L_{ftg} / R_{ftg})$, $e_{kern} = L_{ftg}$ side kern if h (see Eq. 1) Check ut left end ft end, $x = M_a / 2$ / 6 $e \le e_{kern}$ and Eq. 2 above	: OK R
Load Combination	9a: (1 + 0.105 \$ M _a = R = x = e = e _{kern} = Inside kern? W _{reqd} =	505) D + 0.5 561 30 18.92 0.67 6.08 Yes 0.60 OK	25(Eh) + 0.75 kip-ft kips ft ft ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e Kern distance, Resultant is in Required width	Eq. 16-14 coments abo reaction tion from le $x = x - (L_{ftg} / R_{ftg})$, $e_{kern} = L_{ftg}$ side kern if h (see Eq. 1) Check ut left end ft end, $x = M_a / 2$ / 6 $e \le e_{kern}$ and Eq. 2 abo	: OK R ve)
Load Combination	9a: (1 + 0.105 \$ M _a = R = x = e = e _{kern} = Inside kern? W _{reqd} =	505) D + 0.5 561 30 18.92 0.67 6.08 Yes 0.60 OK	25(Eh) + 0.75 kip-ft kips ft ft ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e Kern distance, Resultant is in Required width	Eq. 16-14 coments abo reaction tion from le $x = x - (L_{fig} / R_{fig})$, $e_{kern} = L_{fig}$ side kern if h (see Eq. 1) Check ut left end off end, $x = M_a / 2$ / 6 $e \le e_{kern}$ and Eq. 2 above	: OK R
Load Combination	9a: (1 + 0.105 \$ M _a = R = x = e = e _{kern} = Inside kern? W _{reqd} = Ifficient width?	50S) D + 0.5 561 30 18.92 0.67 6.08 Yes 0.60 OK	25(Eh) + 0.75 kip-ft kips ft ft ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e Kern distance Resultant is in Required width	Eq. 16-14 coments abo reaction tion from le $x = x - (L_{ftg} / R_{ftg})$ side kern if h (see Eq. 1) Check ut left end ft end, $x = M_a / 2$ / 6 $e \le e_{kern}$ and Eq. 2 abov	: OK R ve)
Load Combination	9a: (1 + 0.105 \$ M _a = R = x = e = e _{kern} = Inside kern? W _{reqd} = Ifficient width?	50S) D + 0.5 561 30 18.92 0.67 6.08 Yes 0.60 OK	25(Eh) + 0.75 kip-ft kips ft ft ft ft ft	(L) (CBC 2022 Sum of the mo Factored load Resultant loca Eccentricity, e Kern distance Resultant is in Required width	Eq. 16-14 poments abo reaction tion from le $x = x - (L_{ftg} / R_{ftg})$ side kern if h (see Eq. 1 36.50) Check ut left end ft end, $x = M_a / 2$ / 6 $e \le e_{kern}$ and Eq. 2 abov	: OK R ve)

Consulting Engineers	Project: Ver	netia Valley	By: RK	Page D - 14
45 Fremont Street, 28th Floor			date: 5/15/2	2023
Foundations design conform to California	Client: SV	4	Job No.: 2	200173
(415) 989-1004 Fax (415) 989-1552			Rev. No. 121	.01
Soil pressure distribution		<u>7</u>		-602 0
Load Combination 9b: (1 - 0.105 S	<u>SDS) D - 0.525(</u>	<u>Eh) + 0.75(</u>	L) (CBC 2022 Eq. 16-14) Cr	neck: OK
M _a =	278	kip-ft	Sum of the moments about left end	
R =	16	kips	Factored load reaction	
x =	17.03	ft	Resultant location from left end, $x =$	M _a / R
e =	-1.22	ft	Eccentricity, $e = x - (L_{ftg} / 2)$	
e _{kern} =	6.08	ft	Kern distance, e _{kern} = L _{ftg} / 6	
Inside kern?	Yes		Resultant is inside kern if $e \le e_{kern}$	
W _{reqd} = Sufficient width?	0.36 OK	ft	Required width (see Eq. 1 and Eq. 2	above)
For W = 1.60	ft a -	250	at diat = 0.00 ft	
FOr $VV_{ftg} = 1.50$	$n_{max} =$	358	at dist. = 0.00 ft	
0	q _{min} =	238	at dist. = 36.50 ft	•
منا Soil pressure distribution	- 10	15 -	35 - 20 - 35 - 20 - 35 - 20 -	-2389
Load Combination 10a: (0.6)(D) +	0.7(Eh) (CBC	2022 <u>Eq.</u>	<u>16-16)</u> Cr	neck: OK
M _e =	379	kip-ft	Sum of the moments about left end	
R =	19	kips	Factored load reaction	
x =	20.11	ft	Resultant location from left end, x =	M _a / R
e =	1.86	ft	Eccentricity, $e = x - (L_{ftg} / 2)$	_
e _{kern} =	6.08	ft	Kern distance, $e_{kern} = L_{fra} / 6$	
Inside kern?	Yes		Resultant is inside kern if $e \le e_{kern}$	
W _{reqd} = Sufficient width?	0.45 OK	ft	Required width (see Eq. 1 and Eq. 2	above)
	ft a -	440		
For $W_{ftg} = 1.50$	$n_{max} =$	449	at dist. = 36.50 ft	
0	q _{min} =	239	at dist. = 0.00 ft	0
من Soil pressure distribution		15 -	20 - 25 - 35 - 35 -	0 0 0 0 -449
Load Combination 10b: (0.6)(D) -	<u>0.7(Eh) (CBC</u>	2022 <u>Eq. '</u>	<u>16-16)</u> Cr	neck: OK
M _a =	125	kip-ft	Sum of the moments about left end	
R =	9	kips	Factored load reaction	
x =	14.25	ft	Resultant location from left end, x =	M _a / R
e =	-4.00	ft	Eccentricity, $e = x - (L_{ftq} / 2)$	
e _{kern} =	6.08	ft	Kern distance, e _{kern} = L _{fta} / 6	
Inside kern?	Yes		Resultant is inside kern if $e \le e_{kern}$	

kpff

E1 MISCELLANEOUS

Consulting Engineers	project:	
45 Fremont Street, 28th Floor	location:	
San Francisco, California 94105	client:	
(415) 989-1004 FAX (415) 989-1552	EQUIPMENT ANCHORAGE-WALL MOUNTED	

REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13

Consulting Engineers	project:	
45 Fremont Street, 28th Floor	location:	
San Francisco, California 94105	client:	
(415) 989-1004 FAX (415) 989-1552	EQUIPMENT ANCHORAGE-WALL MOUNTED	

REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13

FASTENER FORCES: LOAD CASE 1: SEISMIC LOADING IN X-X DIRECTION + Z-Z DIRECTION

EL	1.0	DL+	1.2	LRFD LOAD CASE:	
EL	0.7	DL+	1.0	ASD LOAD CASE:	
=	ASD	LRFD			
lb*in	0	0	_{actor})*-e _y =	$M_x = (F_v * EL_{factor} + W_p * DL$	
lb*in	1900	2241.1	-factor)*-e _z =	-factor+Wp*DL _{factor})*e _x +(F _h *El	Л _у = (F
lb*in	0	0	L _{factor})*e _y =	$M_z = (F_h * E$	
e tension	(negativ		l _z -M _z *d _y /l _y	_{ener} =F _{ph} *EL _{factor} /(m*n)+M _y *d _z	
			- NA *-L /I		

 $V_{z \text{ fastener}} = M_x * d_y / I_p - (W_p * DL_{factor} + F_{pv} * EL_{factor}) / (m*n)$ $V_r = (v_y^2 + V_z^2)^{0.5}$

(negative tension indicates compression)

			LRFD LEVEL				ASD LEVEL			
Bolt #	d _y (in)	d _z (in)	T (lbs)	V _y (lbs)	V _z (lbs)	V _r (lbs)	T (lbs)	V _y (lbs)	V _z (lbs)	V _r (lbs)
1	-9	-6	-27.14	0.00	-96.60	96.60	-32.80	0.00	-76.82	76.82
2	-9	6	159.62	0.00	-96.60	96.60	125.53	0.00	-76.82	76.82
3	9	-6	-27.14	0.00	-96.60	96.60	-32.80	0.00	-76.82	76.82
4	9	6	159.62	0.00	-96.60	96.60	125.53	0.00	-76.82	76.82
5										
20										

MAX LOAD CASE 1:		LRFD		ASD	
(X-X LOADING)	Bolt 2	Tension (T)=	159.62 lbs	Tension (T)=	125.53 lbs
	Bolt 1	Shear (V)=	96.60 lbs	Shear (V)=	76.82 lbs

Consulting Engineers	project:	
45 Fremont Street, 28th Floor	location:	
San Francisco, California 94105	client:	
(415) 989-1004 FAX (415) 989-1552	EQUIPMENT ANCHORAGE-WALL MOUNTED	

REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13

FASTENER FORCES: LOAD CASE 2: SEISMIC LOADING IN Y-Y DIRECTION + Z-Z DIRECTION

LRFD LOAD CASE:	1.2	DL+	1.0	EL
ASD LOAD CASE:	1.00	DL+	0.7	EL

	LRFD	ASD	_
$M_x = (F_v * EL_{factor} + W_p * DL_{factor}) * -e_y + (F_h * EL_{factor}) * -e_z =$	-1236	-865.5	lb*in
$M_y = (F_v * EL_{factor} + W_p * DL_{factor}) * e_x =$	3477.6	2765.5	lb*in
$M_z = (F_h * EL_{factor}) * e_x =$	2384.6	1669.2	lb*in

$$\begin{split} T_{fastener}=&M_y^*d_z/I_z^-M_z^*d_y/I_y\\ V_{y\ fastener}=&F_h^*EL_{factor}/(m^*n)^-M_x^*d_z/I_p\\ V_{z\ fastener}=&M_x^*d_y/I_p^-(W_p^*DL_{factor}^+F_{pv}^*EL_{factor})/(m^*n)\\ V_r=&(v_y^{-2}+V_z^{-2})^{0.5} \end{split}$$

(negative tension indicates compression)

-			LRFD LEVEL				ASD LEVEL			
Bolt #	d _y (in)	d _z (in)	T (lbs)	V _y (lbs)	V _z (lbs)	V _r (lbs)	T (lbs)	V _y (lbs)	V _z (lbs)	V _r (lbs)
1	-9	-6	-78.66	50.39	-72.82	88.55	-68.86	35.27	-60.18	69.75
2	-9	6	211.14	82.09	-72.82	109.74	161.60	57.46	-60.18	83.21
3	9	-6	-211.14	50.39	-120.38	130.50	-161.60	35.27	-93.46	99.90
4	9	6	78.66	82.09	-120.38	145.71	68.86	57.46	-93.46	109.72
5										
6										
20										

MAX LOAD CASE 2:		LRFD		ASD
(X-X LOADING)	Bolt 2	Tension (T)=	211.14 lbs	Tension (T)= 161.60 lbs
	Bolt 4	Shear (V)=	145.71 lbs	Shear (V)= 109.72 lbs

GOVERNING LOADS:		L	RFD	ASD
Load Case 2	Bolt 2	Tension (T)=	211.14 lbs	Tension (T)= 161.60 lbs
Load Case 2	Bolt 4	Shear (V)=	145.71 lbs	Shear (V)= 109.72 lbs
	ТЛ			

UNISTRUT

MAXIMUM ALLOWABLE PULL-OUT AND SLIP LOADS

FOR 15/8" (41 MM) WIDTH SERIES CHANNEL

Channel Nut	Gage	Channel	Allowable Pull-Out Strength		Resistance to Slip		Torque	
Size/Inread			Lbs	kN	Lbs	kN	Ft Lbs	N•m
3⁄4" - 10			2500	11.1	1700	7.6	125*	170
5∕a" - 11		P1000 P3000 P5000 P5500	2500	11.1	1500	6.7	100*	135
<mark>∛₂" - 13</mark>	10		2000	8.9	1500	6.7	50	70
%16" - 14	12		1400	6.2	1000	4.4	35	50
³⁄8" - 16			1000	4.4	800	3.6	19	25
⁵ ⁄16" - 18			800	3.6	500	2.2	11	15
1⁄4" - 20			600	2.7	300	1.3	6	8

Consulting Engineers	project:	
45 Fremont Street, 28th Floor	location:	
San Francisco, California 94105	client:	
(415) 989-1004 FAX (415) 989-1552	EQUIPMENT ANCHORAGE-WALL MOUNTED	

REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13

Consulting Engineers	project:	
45 Fremont Street, 28th Floor	location:	
San Francisco, California 94105	client:	
(415) 989-1004 FAX (415) 989-1552	EQUIPMENT ANCHORAGE-WALL MOUNTED	

REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13

FASTENER FORCES: LOAD CASE 1: SEISMIC LOADING IN X-X DIRECTION + Z-Z DIRECTION

	LRFD LOAD CASE:	1.2	DL+	1.0	EL		
	ASD LOAD CASE:	1.0	DL+	0.7	EL		
I						-	
		-	LRFD	ASD	_		
	$M_x = (F_v * EL_{factor} + W_p * DL_f$	actor)*-e _y =	0	0	lb*in		
$M_y = (F_v * EL$	-factor+Wp*DL _{factor})*e _x +(F _h *EL	_{factor})*-e _z =	194.4	160.08	lb*in		
	$M_z = (F_h * E)$	_ _{factor})*e _y =	0	0	lb*in		
T _{fast}	_{ener} =F _{ph} *EL _{factor} /(m*n)+M _y *d _z /		(negativ	e tension in	dicates compressio	n)	
	V _{y fastener}	$=-M_x * d_z / I_p$					
V _{z fastener} =N	M _x *d _y /I _p -(W _p *DL _{factor} +F _{pv} *EL _{fa}	_{actor})/(m*n)					
	V _r =('	$v_{y}^{2} + V_{z}^{2}^{0.5}$					

LRFD LEVEL ASD LEVEL Bolt # d_y (in) d_z (in) T (lbs) V_y (lbs) V_z (lbs) V_r (lbs) T (lbs) V_y (lbs) V_z (lbs) V_r (lbs) 0.00 -16.70 -3 0 #DIV/0! -21.00 21.00 #DIV/0! 0.00 16.70 1 2 3 0 #DIV/0! 0.00 -21.00 21.00 #DIV/0! 0.00 -16.70 16.70 3 4 5 20

MAX LOAD CASE 1:		LRFD		ASD	
(X-X LOADING)					lbs
	Bolt 1	Shear (V)=	21.00 lbs	Shear (V)=	16.70 lbs

Consulting Engineers	project:	
45 Fremont Street, 28th Floor	location:	
San Francisco, California 94105	client:	
(415) 989-1004 FAX (415) 989-1552	EQUIPMENT ANCHORAGE-WALL MOUNTED	

REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13

FASTENER FORCES: LOAD CASE 2: SEISMIC LOADING IN Y-Y DIRECTION + Z-Z DIRECTION

LRFD LOAD CASE:	1.2	DL+	1.0	EL
ASD LOAD CASE:	1.00	DL+	0.7	EL

_	LRFD	ASD	_
$M_x = (F_v * EL_{factor} + W_p * DL_{factor}) * -e_y + (F_h * EL_{factor}) * -e_z =$	-57.6	-40.32	lb*in
$M_y = (F_v * EL_{factor} + W_p * DL_{factor}) * e_x =$	252	200.4	lb*in
$M_z = (F_h * EL_{factor}) * e_x =$	172.8	120.96	lb*in

$$\begin{split} T_{fastener} = & M_y^* d_z / I_z - M_z^* d_y / I_y \\ V_{y \ fastener} = & F_h^* E L_{factor} / (m^*n) - M_x^* d_z / I_p \\ V_{z \ fastener} = & M_x^* d_y / I_p - (W_p^* D L_{factor} + F_{pv}^* E L_{factor}) / (m^*n) \\ V_r = & (v_y^{-2} + V_z^{-2})^{0.5} \end{split}$$

(negative tension indicates compression)

				LRFD LE		ASD LEVEL				
Bolt #	d _y (in)	d _z (in)	T (lbs)	V _y (lbs)	V _z (lbs)	V _r (lbs)	T (lbs)	V _y (lbs)	V _z (lbs)	V _r (lbs)
1	-3	0	#DIV/0!	14.40	-11.40	18.37	#DIV/0!	10.08	-9.98	14.18
2	3	0	#DIV/0!	14.40	-30.60	33.82	#DIV/0!	10.08	-23.42	25.50
3										
4										
5										
6										
20										

MAX LOAD CASE 2:		LRFD		ASD
(X-X LOADING)	#DIV/0!	Tension (T)=	#DIV/0! lbs	Tension (T)= #DIV/0! lbs
	Bolt 2	Shear (V)=	33.82 lbs	Shear (V)= 25.50 lbs

GOVERNING LOADS:		LF	RFD	ASD
Load Case 2	Bolt 2	Shear (V)=	33.82 lbs	lbs Shear (V)= 25.50 lbs
CHANNEL NUT LOAD DA FOR 1%" (41 MM) WIDTH SERIES (TA CHANNEL		UNISTRUT	

MAXIMUM ALLOWABLE PULL-OUT AND SLIP LOADS

Channel Nut	Gage Channel		Allowable Pull-Out Strength		Resistan	ce to Slip	Torque	
Size/Thread	-		Lbs	kN	Lbs	kN	Ft Lbs	N•m
3⁄4" - 10			2500	11.1	1700	7.6	125*	170
5%" - 11			2500	11.1	1500	6.7	100*	135
¹ ⁄2" - 13	10	P1000 P3000	2000	8.9	1500	6.7	50	70
%16" - 14	12	P5000	1400	6.2	1000	4.4	35	50
³⁄8" - 16		P5500	1000	4.4	800	3.6	19	25
⁵ ⁄16" - 18			800	3.6	500	2.2	11	15
1⁄4" - 20			600	2.7	300	1.3	6	8

		Wind Loa	ad Tabulat	ion for Roof Cor	mponents & C	ladding		
Component	Z	Kh	qh		p = Net	Design Pressure	es (psf)	
	(ft.)	0.07	(psf)	All Zones (+)	Zone 1,2e (-)	Zone 2n,2r (-)	Zone 3e (-)	Zone 3r (-
Decking	0.00	0.85	15.63	10.35	-41.90	-53.72	-60.31	-67.77
For $z = nr$:	13.00	0.85	15.63	10.35	-41.90	-53.72	-60.31	-67.77
For $z = be$	10.75	0.85	15.63	10.35	-41.90	-53 72	-60 31	-67 77
For $z = h$	11.88	0.85	15.63	10.35	-41.90	-53 72	-60.31	-67.77
		0.00		10.00				•••••
 Width of Zone 3 Width of Zone 3 For monoslope For buildings wi For all buildings If a parapet >= 3 Negative Zone 3 Per Code Section References 	a (corner), '0. roofs with θ th h > 60' an 3' in height is 3 shall be tre on 30.2.2, th : a. ASCE 7-	6*a' & 0.2 $<= 3 degradown d \theta > 10 dngs, use Fs providedasted as Ze minimur16, "Minin$	2*a'= ees, use Fi legrees, us ig. 30.4-2E around pe one 2; Pos n wind loac num Design	1.80 1.80 g. 30.4-2A for 'Ge e Fig. 30.6-1 for ' 3 for 'GCp' values rimeter of roof wi tive Zone 2 & 3 s f or C&C shall no n Loads for Buildi	0.60 Cp' values with GCpi' values w s per Sect. 30.7 th $\theta <= 7$ degres shall be treated of be less than ings and Other	ft. 'qh'. /ith 'qh'. I0. ses, las Zone 4 & 5 16 psf. Structures".		
TABLE 1.2 – Fastener Wi T1.2 - F Nominal Thickness of	ind Uplift Desigr astener Wind or #14-13 DP1 Clip Spaci	n Load – Woo Uplift Desig Screws in W ng (Span) in Fee	od Substrates: n Strength, P Vood Substra t	SF tes		1' - 6 Panel W	Vidth	
Wood Deck 6.0 5.5 5.0 7/16" 058 13.6 14.8 16.3 19/32" 058 29.1 31.7 34.9 32/32" 058 40.6 44.3 48.7 1/2" Plywood 38.6 42.1 46.3 5/8" Plywood 35.6 60.7 66.8 2x4 SYP 88.1 96.1 105.7 was are factored loads for use with LRFD Lo. 14.8 170.7	4.5 4.0 18.1 20.4 38.8 43.6 54.2 60.9 51.4 57.9 56.3 63.3 74.2 83.5 117.5 132.1 ad Combinations. A	3.5 3.0 23.3 27. 49.8 58. 69.6 81. 66.1 77. 72.4 84. 95.4 111. 151.0 176. resistance factor	2.5 2 2 32.6 1 69.8 2 97.5 2 97.5 3 133.5 1 133.5 2 211.4 2 211.4	.0 1.5 1.0 40.8 54.4 81.6 87.2 116.3 174.4 21.9 162.5 243.7 15.7 154.3 231.5 26.7 168.9 253.3 66.9 22.2 333.9 64.3 352.4 528.5 been applied in accordance 528.5	Clip Spacin		•	
DS. IRE 1.3: No. 16 Gauge Standard Clip	– Material Prop	erties and Fig	gures (Typical		ZONE 3 Penetrat Nominal	$r_{tion Depth = 5/8"}$)" spacing - 84.4	nef
					Penetrat LRFD to Actual c	tion reduction fac ASD conversion apacity = 84.4 x 0	tor = 0.625 = = 1/0.4 = 2.5 0.625 x 2.5 = 131	.875 psf
	5 7/16"	8		\geq	Factored 40.66 ps Factor o	d max wind dema sf f Safety = 2	and (3r) = 0.6 x 67	7.77 psf =
		X°°)	DCR = 4	40.66x2/131.875	< 1	
			//		Spacing	3' - 0" acceptable	e for zone 3r.	
16 Gauge Stand 0.0556 in. (min) S _{xe} (tr A653/A792 SS-33 S _{xe} (br 33 ksi (min) 29,500 ksi	ard Clip Propertion op) 0.1520 in ³ ot) 0.2454 in ³ I _x 0.2634 in ⁴	øP _n	(E-TF) 0.473 k	< .	<u>All other</u> Penetra Nominal Penetra LRFD to Actual c	zones: tion Depth = 5/8" Capacity at 3' - 6 tion reduction fac ASD conversion apacity = 72.4 x 0	6" spacing = 72.4 tor = 0.625 1 = 1/0.4 = 2.5 0.625 x 2.5 = 113	psf .125 psf
					Factored	d max wind dema	and (3r) = 0.6 x 60).31 psf = 3

DCR = 36.2x2/131.875 < 1

6/1/2023 8:36 AM

Spacing 3' - 6" acceptable for zone 3r.

FIGURE1.6 – Series 300 – 0.040-inch and 0.050-inch thick Aluminum:

TABLE 1.13 – 0.040-thick Aluminum Section Properties: .040" Aluminum x 18" Panel Properties

Thickness	0.040 in. (nom)	lx (top)	0.450 in4	øM _n (top)	4.02 k-in
Type	3105-H25	lx (bot)	0.430 in4	øM _n (bot)	5.42 k-in
Width	18 in. (nom)			øV _n	1.340 k
Fv	19 ksi				
E	10,100 ksi				

For SI: 1 inch = 2.54 mm; 1 ksi = 6.89 MPa; 1 kip = 1000 lbs.

Notes:

- 1. Section properties are calculated in accordance with the ADM1-2015, Aluminum Design Manual: Part 1-A Specification for Aluminum Structures.
- 2. The section properties also shall be used for the 0.050-inch panels.
- 3. The 0.050- and 0.040-inch aluminum panel loads may be designed by a registered design professional using the Section Properties in Table 1.13 of this report.
- 4. E is the modulus of elasticity.
- 5. F_y is the yield strength.
- 6. I_{xe} is the effective moment of inertia about the cross-section about the x-axis.
- 7. M_n is the nominal bending strength.
- 8. V_n is the nominal shear strength.

Check Panel Strength:

Trib Width of Panel = Building Width / 2 = 22.5' / 2 = 11.25'W = 66.8 psf x 11.25' = 751.5 plf Mu = WL^2/8 = 751.5 x (1.5)^2 / 8 = 211 lbs-ft = 2.5 kip-in < Mn listed in Table 1.13 above --> OK!

For clip capacity, see Table 1.16 in ER 686 shown below: Allowed wind load = 141 psf >> 66.7 psf

TABLE 1.16 - Clip Wind Negative (Uplift) Design Load:

		T1.16 Series 300 Panel/Clip Wind Uplift Design Load, PSF									
		.040 <mark>" or .050" Aluminum</mark> with 18" o.c. Seam Spacing									
				Sta	indard 1	l6 ga c	lip Anch	nors			
					Clip Sp	acing (Spa	n), Feet				
	6.0	6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0									
Max. Design Load, PSF	44.8	55.5	66.2	77.0	87.7	98.4	109.1	119.8	130.6	141.3	152.0

For SI: 1 inch = 25.4 mm; 1 foot = 305 mm; 1 psf = 47.9 Pa

- 2. Design loads shown are factored loads for use with LRFD load combinations.
- 3. Intermediate design values have been determined based on linear interpolation between tested values based on Section 5.4.3.2 of EC011-2019.
- 4. The allowable service load deflections for metal roof panels shall be taken as L/60.
- 5. Wind uplift design loads may be further limited by the design strength of the anchor fasteners into the roof substrate. The tests conducted in accordance with ASTM E1592, shown in this table, utilized two ¼" -14 x 1.25" HWH self-drilling tapping screws per anchor/ purlin connection. For other fastener types or roof substrates, the faster design strength shall be designed by the registered design professional.
- 6. Tables 1.1 and 1.2 of this report have been provided for the fastener design strength of a frequently used screw type into typical metal and wood roof substrates.

^{1.} The wind uplift nominal strength has been determined according to the procedures of AISI S906, with a resistance factor, Φ =0.80 in accordance with AISI S100-12 D6.2.1.