lepff

Venetia Valley Elementary School Restroom Addition

SAN RAFAEL, CALIFORNIA

TABLE OF CONTENTS

Section

Intent of Calculations
Description of Project
Loads \& Design Information
Gravity Framing
Lateral Framing
Foundations
Miscellaneous

Page

i.
ii.

A1
B1
C1
D1
E1

MAY 19th, 2023

DESCRIPTION OF PROJECT

This project includes adding a single-story restroom to the Ventia Valley elementary school in San Rafael, California.

The structure has a gable roof supported by 2×10 joists spaced at 24 " o.c. A single glulam beam ridge beam is supporting the joists. The gable roof has a 5 ' long overhang. Roof is supported by wood stud walls along the perimeter.

Exterior wood shear walls are the main lateral force resisting system in the structure in both directions.

The structure is supported on $18^{\prime \prime}$ wide $\times 24^{\prime \prime}$ deep grade beams along the perimeter of the building.

A1-LOADS \& DESIGN INFORMATION

				A-1
Consulting Engineers	Venetia Valley Restroom	by:	rk	sheet no:
		date:		
San Francisco, California 94105 (415) 989-1004 FAX (415) 989-1552	SVA			$\begin{aligned} & \text { job no: } \\ & 2200173.00 \end{aligned}$
		2200173		
				Rev. No. 120.05

DESIGN CRITERIA

Design conforms to the Caliornia Building Code, 2022 Edition.

LIVE LOADS

Roofs (flat)

WIND ANALYSIS

Basic Wind Speed
Exposure Category
Internal Pressure Coefficient

20 psf

$\mathrm{V}_{3 \mathrm{~S}}$	$=$	92	mph (ASCE 7-16 Figure 26.5)
	$=$	C	(ASCE 7-16 Section 26.7.3)
$\mathrm{GC}_{\mathrm{pi}}$	$=$	0.18	
		(ASCE 7-16 Table 26.13-1)	

$=\quad$ II (ASCE 7-16 Table 1.5-1)
$=$ C (ASCE 7-16 Section 20.3)
$\mathrm{I}_{\mathrm{e}}=1.0 \quad$ (ASCE 7-16 Table 1.5-2)

Bearing Wall: Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance
$\mathrm{R}=6.5 \quad$ (ASCE 7-16 Table 12.2-1)
$\Omega_{0}=3$ (ASCE 7-16 Table 12.2-1)

```
Bearing Wall: Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance
\(\mathrm{R}=6.5 \quad\) (ASCE 7-16 Table 12.2-1)
\(\Omega_{0}=3\) (ASCE 7-16 Table 12.2-1)
\[
\mathrm{S}_{\mathrm{S}}=1.500 \mathrm{~g}
\]
\[
S_{1}=0.600 \mathrm{~g}
\]
\[
F_{a}=1.20
\]
\[
F_{v}=1.7
\]
```

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{DS}}=1.200 \mathrm{~g} \\
& \mathrm{~S}_{\mathrm{D} 1}=0.680 \mathrm{~g}
\end{aligned}
$$

Equiv. Lateral Force Procedure (ELF) - ASCE7 Sec 12.8
Hand Calculation

				$\frac{\text { A - } 2}{\text { sheet no: }}$
	Venetia Valley Restroom	by:	rk	
		date:		sheet no:
San Francisco, California 94105	SVA			job no:
(415) 989-1004 FAX (415) 989-1552		2200173		2200173.00
				Rev. No. 120.05

FOUNDATION CRITERIA

Reference: CBC2022-TABLE 1806.2

AT GRADE

Maximum Soil Pressure:

Dead	1,500	psf
Dead + Live	1,500	psf
Dead + Live + Lateral	1,800	psf

Passive Earth Pressure:
Equivelent Fluid Weight
100 pcf (FS=1.5)
Coefficient of Friction:
0.35
($\mathrm{FS}=1.5$)

Consulting Engineers 45 Fremont Street, 28th Floor San Francisco, California 94105 (415) 989-1004 FAX (415) 989-1552		project:	Venetia Va	by:	rk
		location:		date:	09/12/22
		client:	SVA		
					2200173.00
					Rev. No. 120.05
EQUIVALENT LATERAL FORCE PROCEDURE CBC 2022 \& ASCE 7-16, Section 12.8:					
Input Data:					
Risk Category = Importance Factor, $\mathrm{I}_{\mathrm{e}}=$	II	(ASCE 7 Table 1.5-1)			
	1.00	(ASCE 7 Table 1.5-2)			
Soil Site Class =	D	Default (No Soils Report)		ASCE 7 Ch. 20.3 Table 20.3-1	
Site Latitude \& Longitude	$38.001^{\circ} \mathrm{N}$	-122.52484 ${ }^{\text {Coordinates based on site address }}$			
Spectral Accel., $\mathrm{S}_{\mathrm{s}}=$	1.500	g (Geotech Report or USGS Hazard Maps)			
Spectral Accel., $\mathrm{S}_{1}=$	0.600	g (Geotech Report or USGS Hazard Maps)			
Structure Height, $\mathrm{h}_{\mathrm{n}}=$	13.750	ft			
No. of Seismic Levels $=$	1	ASCE Table 12.2-1			
Seismic Resist. System $=$	A15				
Long-Period Trans., $\mathrm{T}_{\mathrm{L}}=$	12	sec, ASCE7 Fig. 22-14			
Fundamental Period, $\mathrm{T}=$	N/A	sec, based on analysis per ASCE 12.8.2			
Seismic force-resisting system = Bearing Wall: Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance (ASCE Table 12.2-1)					
Site Coefficients:					
Ground Motion Procedure	Code Spectrum ${ }^{\text {a }}$ ASCE 7 Se				
Short-period factor, $\mathrm{F}_{\mathrm{a}}=$	1.2	ASCE 7 Table 11.4-1 Fa=1.2 min per ASCE7 Sec 11.4.4			
Long-period factor, $\mathrm{F}_{\mathrm{v}}=$	1.7				
Maximum Spectral Response Accelerations:					
$\mathrm{S}_{\text {MS }}=$	1.800	$\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{s}}$ (ASCE Eqn. 11.4-1)			
$\mathrm{S}_{\mathrm{M} 1}=$	1.020	$\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{v}} \mathrm{S}_{1}$ (ASCE Eqn. 11.4-2)			
Design Spectral Response Accelerations for Short and 1-Second Periods :					
$\mathrm{S}_{\mathrm{DS}}=$	1.200	$S_{D S}=2 / 3 S_{M S}$, ASCE Eq. 11.4-3			
$\mathrm{S}_{\mathrm{D} 1}=$	0.680	$\mathrm{S}_{\mathrm{D} 1}=2 / 3 \mathrm{~S}_{\mathrm{M} 1}$, ASCE Eq. 11.4-4			
Calculate Ts: $\quad \mathrm{T}_{\mathrm{s}}=$ Governing Period, $\mathrm{T}=$ §11.4.8 to use Code Spectrum: Site-Specific Spectrum Exception:	0.567	For using Code Spectrum: $\mathrm{T}_{\mathrm{s}}=\mathrm{S}_{\mathrm{D} 1} / \mathrm{S}_{\mathrm{DS}}$, ASCE7 Sec 11.4.6 $\mathrm{sec}, \mathrm{T}=\mathrm{T}_{\mathrm{a}} \leq \mathrm{T}_{\text {max }}$ (ASCE 12.8.2), see calcs below $\leq 1.5 \mathrm{Ts}$: $\mathrm{Cs}=$ Eqn. 12.8-2			
	0.143				
	Site D - Period T ≤ 1.5 Ts: Cs = Eqn. 12.8-2				
	Exception 2a	Code-Spectrum Permitted: ASCE7-16 Sec 11.4.8			
Seismic Design Category:					
Category (based on S_{DS}) $=$	D	ASCE Table 11.6-1			
Category (based on $\mathrm{S}_{\mathrm{D} 1}$) $=$	D	ASCE Table 11.6-2			
Category $\left(S_{1} \geq 0.75\right)=$	N.A.	ASCE Section 11.6			
Sec 11.6 condition triggered?	No				
Seismic Design Category =	D	Governed by the most critical of all category cases above			
Fundamental Period:					
Period Coefficient, $\mathrm{C}_{\mathrm{t}}=$	0.020	ASCE Table 12.8-2 for "All other structural systems"			
Period Exponent, $x=$	0.75	ASCE Table 12.8-2 for "All other structural systems"			
Approx. Period, $\mathrm{T}_{\mathrm{a}}=$	0.143	$\mathrm{sec}, \mathrm{T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{t}} \mathrm{h}_{\mathrm{n}}{ }^{\mathrm{x}}$ (ASCE Eq. 12.8-7)			
Upper Limit Coef., $\mathrm{C}_{\mathrm{u}}=$	1.400				
Period max., $\mathrm{T}_{\text {max }}=$	0.200	sec, $\mathrm{T}_{\text {max }}=\mathrm{C}_{\mathrm{u}}{ }^{*} \mathrm{~T}_{\mathrm{a}}$ (ASCE 12.8.2)			
Fundamental Period, T =	0.143	sec, $\mathrm{T}=\mathrm{T}_{\mathrm{a}} \leq \mathrm{T}_{\max }$ (ASCE 12.8.2)			
Seismic Design Factors and Coefficients:					
Response Modifier, $\mathrm{R}=$	6.5	ASCE Table 12.2-1			
Overstrength Factor, $\Omega_{0}=$	3	ASCE Table 12.2-1 (See note d for flexible diaphragms)			
Defl. Amplif. Factor, $\mathrm{C}_{\mathrm{d}}=$	4	ASCE Table 12.2-1			
$\mathrm{C}_{\mathrm{S}}($ Short Period) $=$	0.185	$C_{S}=S_{D S} /(\mathrm{R} / \mathrm{I}), \text { ASCE Eq. 12.8-2, page } 89$			
$\mathrm{C}_{\mathrm{s}}\left(T \leq \mathrm{T}_{\mathrm{L}}\right)=$	0.733	$\mathrm{C}_{S}=\mathrm{S}_{\mathrm{D} 1} /\left((\mathrm{R} / \mathrm{I})^{*} \mathrm{~T}\right)$ for $\mathrm{T} \leq \mathrm{T}_{\mathrm{L}}$ (ASCE Eq. 12.8-3, p .101)			
$\mathrm{C}_{\mathrm{s}}\left(\mathrm{T}>\mathrm{T}_{\mathrm{L}}\right)=$	N/A	$\mathrm{C}_{\mathrm{S}}=\mathrm{S}_{\mathrm{D} 1}{ }^{*} \mathrm{~T}_{\mathrm{L}} /\left((\mathrm{R} / \mathrm{I})^{*} \mathrm{~T}^{2}\right)$ for $\mathrm{T}>\mathrm{T}_{\mathrm{L}}$ (ASCE Eq. 12.8-4, p. 101)			
$\mathrm{C}_{\mathrm{s}}($ SSS alternate $)=$	N/A	$\begin{aligned} & \mathrm{C}_{\mathrm{s} \text {,atternate }}=\text { Site-Specific } \mathrm{S}_{\mathrm{a}} /(\mathrm{R} / \mathrm{I}) \text { per ASCE Sec } 21.4 \\ & \mathrm{C}_{\mathrm{s}, \text { min }}=0.044 \mathrm{~S}_{\mathrm{DS}} \mathrm{I} \text { or } 0.5^{*} \mathrm{~S}_{1} /(\mathrm{R} / \mathrm{I}) \text { if } \mathrm{S}_{1} \geq 0.6 \mathrm{~g} \text { (Eq. 12.8-5\&6, p. 101) } \\ & \text { Exception } 2 \text { a for Site } \mathrm{D}-\text { Period } \mathrm{T} \leq 1.5 \mathrm{Ts}: \mathrm{Cs}=\text { Eqn. } 12.8-2_{\mathrm{C}_{\mathrm{S}, \text { min }} \leq \mathrm{C}_{\mathrm{S}} \leq \mathrm{C}_{\mathrm{S}, \text { max }}, \mathrm{C} \geq 0.01} \end{aligned}$			
$\mathrm{C}_{\mathrm{s}}(\mathrm{min})=$	0.053				
$\mathrm{C}_{\mathrm{s}}(\S 11.4 .8$ exception) $=$	0.185				
Use: $\mathrm{C}_{\text {S }}=$	0.185				

Code Response Spectrum

Site-Specific Response Spectrum

C1-LATERAL FRAMING

Number of seismic of Levels $=$	1
Total Structure Height, $\mathbf{h}_{\mathbf{n}}=$	13.75
Seismic Base Shear Coefficient, $\mathbf{C}_{\mathbf{s}}=$	0.185

W =	60	kips	(ASCE 7-16 Section 12.7.2)
$W^{*} \mathrm{C}_{\text {S }}=\mathrm{V}=$	11.1	kips	LRFD
$0.7 *{ }^{*} C_{S}=\mathrm{V}=$	8	kips	ASD

level	floor type	story heights (ft)	story heights (ft)	uniform loads (psf)	area $\left(\mathrm{ft}^{2}\right)$	added loads (k)	total weight (k)
1	Roof	13.75	13.75	51	1184		60

VERTICAL DISTRIBUTION OF LATERAL SEISMIC FORCE

Base Shear $=8$ kips

Consulting Engineers	project:	by:	sheet no:C-3
45 Fremont Street, 28th Floor	location:	date:	
San Francisco, California 94105	client:		job no:
(415) 989-1004 FAX (415) 989-1552			
			Rev. No. 120.05

Fundamental Period, $T=0.143 \mathrm{sec}$
Vertical Distribution of Seismic Forces:
Distribution Exponent, $\mathrm{k}=1.00 \mathrm{k}=1$ for $\mathrm{T} \leq 0.5$ sec., $\mathrm{k}=2$ for $\mathrm{T} \geq 2.5$ sec. Linear interpolation: $\mathrm{k}=(2-1)^{*}(\mathrm{~T}-0.5) /(2.5-0.5)+1$, for $0.5 \mathrm{sec} .<\mathrm{k}<2.5 \mathrm{sec}$. Lateral Force at Any Level: $F_{x}=C_{v x}{ }^{*} V$, ASCE 7 Eq. 12.8-11 (p. 72)
Vertical Distribution Factor: $\mathrm{C}_{\mathrm{vx}}=\mathrm{W}_{\mathrm{x}}{ }^{*} h_{x}{ }^{\mathrm{k}} /\left(\Sigma \mathrm{W}_{\mathrm{i}}{ }^{*} \mathrm{~h}_{\mathrm{i}}{ }^{k}\right)$, ASCE 7 Eq. 12.8-12 (p. 73)
Diaphragm Design Forces:

$$
\mathrm{C}_{\mathrm{px}, \text { max }}=0.480 \mathrm{C}_{\mathrm{px}, \max }=0.4^{*} \mathrm{~S}_{\mathrm{Ds}}{ }^{*} \mathrm{I} \text {, ASCE } 7 \mathrm{Eq} .12 .10-3 \text { (p. 75) }
$$

$$
\mathrm{C}_{\mathrm{px}, \min }=0.240 \mathrm{C}_{\mathrm{px}, \min }=0.2^{*} \mathrm{~S}_{\mathrm{Ds}}{ }^{*} \mathrm{I} \text {, ASCE } 7 \text { Eq. 12.10-2 (p. 75) }
$$

Vertical Distribution Factor: $\mathrm{F}_{\mathrm{px}}=\left(\Sigma \mathrm{F}_{\mathrm{i}} / \Sigma \mathrm{W}_{\mathrm{i}}\right)^{*} \mathrm{w}_{\mathrm{px}}$, ASCE 7 Eq. 12.10-1 (p. 75)

Seismic Level x	$\overline{h_{x}}$ $\left(\begin{array}{l} \mathrm{ft.}) \end{array}\right.$	$\begin{aligned} & \mathbf{h}_{\mathrm{x}}{ }^{2} \\ & \text { (ft.). } \end{aligned}$	$\begin{gathered} \text { Weight, } W_{x} \\ \text { (kips) } \\ \hline \hline \end{gathered}$	$\begin{aligned} & \mathbf{W}_{\mathrm{x}}{ }^{*} \mathrm{~h}^{k} \\ & \text { (ft-kips) } \end{aligned}$	$C_{v x}$ (\%)	Shear, F_{x} (kips)	Σ Story Shears	$\overline{C_{p x}}$ (\%)	$\begin{gathered} \mathbf{F}_{\mathrm{px}} \\ \text { (kips) } \\ \hline \end{gathered}$
1	13.75	13.75	60	824	100\%	7.7	8	13\%	14
$\Sigma=$			60	824	1.000	7.74			

SHEAR WALL DESIGN

Plywood Sheathing

Level (ft)	F_{x} (kips)	Area, $\mathrm{A}_{\mathbf{x}}$ (ft 2)
1	8	1184

EW DIRECTION

Zone	Level	Trib Area $\left(\mathbf{f t}^{2}\right)$	$\mathbf{F}_{\mathbf{x}, \text { zone }}$ $(\mathbf{k i p s})$	$\mathbf{V}_{\mathbf{x}, \text { zone }}$ $(\mathbf{k i p s})$	$\mathbf{L}_{\text {wall }}$ $(\mathbf{f t})$	$\mathbf{V}_{\text {wall, AsD }}$ (plf)	Shear Wall Type	Wall Capacity	DCR $(\%)$
$\mathrm{A}-1$	1	592	3.87	3.87	22.5	172	A	310	55%
$\mathrm{~A}-2$	1	592	3.87	3.87	18	215	A	310	69%

NS DIRECTION

Zone	Level	Trib Area $\left(\mathbf{f t}^{2}\right)$	$\mathbf{F}_{\mathbf{x}, \text { zone }}$ (kips)	$\mathbf{V}_{\mathbf{x}, \text { zone }}$ (kips)	$\mathbf{L}_{\text {wall }}$ $(\mathbf{f t})$	$\mathbf{V}_{\text {wall, AsD }}$ $(\mathbf{p l f})$	Shear Wall Type	Wall Capacity	DCR $(\%)$
1	1	592	3.87	3.87	10	387	B	460	84%
2	1	592	3.87	3.87	10	387	B	460	84%

Consulting Engineers45 Fremont Street, 28th FloorSan Francisco, California 94105(415) 989-1004 FAX (415) 989-1552	project:	Venetia Valley Restroom		rk	sheet no:
	location:		date:		
	client:	SVA			$\begin{array}{\|l\|} \hline \text { job no: } \\ 2200173 \\ \hline \end{array}$
SHEAR WALL OVERTURNING CHECKS					[ASD]

Notes:

$\Sigma \mathrm{M}_{\mathrm{OT}}=$ Sum of overturning moments at story, ASD
$\Sigma \mathrm{M}_{\mathrm{R}}=$ Sum of resisting moments at story
$M_{\text {NET }}=$ net overturning moment using the LC: $E-\left(0.6-0.14 S_{D S}\right)^{*} D L$ $T=$ resulting uplift: $M_{\mathrm{NET}} / L_{\text {eff }}$
$L_{w, \text { eff }}=$ Effective width of wall for resisting couple, taken as length of wall minus 2 ft
(1) Leff updated manually to account for gravity posts
$\mathrm{T}_{\text {LRFD }}=$ calculated using LC: $1.4 \mathrm{E}-\left(0.9-0.2 \mathrm{~S}_{\text {DS }}\right)^{*} \mathrm{DL}$, used for tiedown anchorage design
For a sample hand calculation of how the values in each row are calculated, see following pages.

EAST-WEST DIRECTION (X)

Shear Wall	$\mathrm{H}_{\text {wall }}$ (ft)	$\mathrm{L}_{\text {wall }}$ (ft)	$\mathrm{v}_{\text {wall }}$ (plf)	$\Sigma \mathrm{V}_{\text {WALL }}$ (kip)	$\begin{aligned} & \sum \mathrm{M}_{\mathrm{OT}} \\ & (\mathrm{k}-\mathrm{ft}) \end{aligned}$	Weight (plf)	$\begin{gathered} \hline \text { Trib DL } \\ \text { (plf) } \end{gathered}$	$\begin{aligned} & \sum \mathrm{M}_{\mathrm{R}} \\ & (\mathrm{k}-\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\text {NET }} \\ & (\mathrm{k}-\mathrm{ft}) \end{aligned}$	$\mathrm{L}_{\text {w,eff }}$ (ft)	$\begin{gathered} \hline \mathrm{T} \\ \text { (kip) } \end{gathered}$	$\begin{aligned} & \hline \mathrm{T}_{\text {LRFD }} \\ & \text { (kip) } \end{aligned}$
WA_1	13.8	22.5	172	3.9	53	234	42	70	23	20.5	1.1	1.4
WA_2	13.8	10.0	215	2.2	30	234	42	14	24	8.0	3.0	4.0

NORTH-SOUTH DIRECTION (Y)

Shear Wall	$\mathrm{H}_{\text {wall }}$ (ft)	$\mathrm{L}_{\text {wall }}$ (ft)	$\begin{aligned} & \mathrm{v}_{\text {wall }} \\ & \text { (plf) } \end{aligned}$	$\Sigma \mathrm{V}_{\text {WALL }}$ (kip)	$\begin{aligned} & \sum \mathrm{M}_{\mathrm{OT}} \\ & (\mathrm{k}-\mathrm{ft}) \end{aligned}$	Weight (plf)	Trib DL (plf)	$\begin{aligned} & \sum M_{R} \\ & (\mathrm{k}-\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{M}_{\mathrm{NET}} \\ & (\mathrm{k}-\mathrm{ft}) \end{aligned}$	$\mathrm{L}_{\mathrm{w}, \text { eff }}$ (ft)	$\begin{gathered} \hline \mathrm{T} \\ \text { (kip) } \end{gathered}$	$\begin{aligned} & \hline \mathrm{T}_{\text {LRFD }} \\ & \text { (kip) } \end{aligned}$
W1_1	10.0	5.0	387	1.9	19	170	231	5	17	3.0	5.7	7.9
W1_2	10.0	5.0	387	1.9	19	170	231	5	17	3.0	5.7	7.9

$\underline{\underline{\text { SHEAR WALL HOLDOWN \& POST DESIGN }}}$

Notes:
$\mathrm{S}_{\mathrm{DS}}=1.20$
$T_{E}=$ resulting uplift: $M_{N E T} / L_{\text {eff }}$
$T=C_{E}$. gravity load, using [LC10: E-(0.6-0.14 $\left.\mathrm{S}_{\mathrm{DS}}\right) \mathrm{D}$]
$C_{E}=M_{\text {OT }} / L_{\text {EFF }}$
$\mathrm{C}=\mathrm{C}_{\mathrm{E}}+$ gravity load, max of [LC8: $\left.\left(1+0.14 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+\mathrm{E}\right]$ \& [LC9: $\left.\left(1+0.14 \mathrm{~S}_{\mathrm{DS}}\right) \mathrm{D}+0.75(\mathrm{~L}+\mathrm{E})\right]$
(1) Seismic Load E is at ASD level
(2) Max DCR manually changed to be higher than design DCR.
(3) See following pages for Simpson Strong Tie Catalog

SST HOLDOWN CAPACITY ${ }^{(3)}$

HDU Type	Model	Rod Dia. [in]	Capacity [lbs]	$0.8^{\star} T_{\text {all }}$ $[$ kip	d_{a} $[$ in $]$
HD-7	(2) HDU19	$111 / 4$	38720	30.976	0.180
HD-6	(2) HDU14	1	28890	23.112	0.172
HD-5	(2) HDU11	1	22350	17.880	0.137
HD-4	(2) HDU8	$7 / 8$	15740	12.592	0.113
HD-3	HDU14	1	14445	11.556	0.172
HD-2	HDU11	1	11175	8.940	0.137
HD-1	HDU8	$7 / 8$	7870	6.296	0.113

EAST-WEST DIRECTION (X)

			GRAVITY LOADS		COMPRESSION				TENSION						
Shear Wall	$\begin{gathered} \text { Wall } \\ \text { Thickness } \end{gathered}$	Height	Add'I DL	Add'I LL	$\begin{gathered} \mathrm{C}_{\mathrm{E}} \\ {[\mathrm{lbs}]} \end{gathered}$	C (lbs)	Post	DCR	$\begin{gathered} \mathrm{T}_{\mathrm{E}} \\ {[\mathrm{kip}]} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \text { [kip] } \end{gathered}$	$\mathrm{d}_{\mathrm{a}: \text { POST }}$ [in]	$\begin{gathered} \text { INCLUDE } \\ D L ? \end{gathered}$	HDU Type	DCR	NOTES
WA_1	6 x	13.75			1197.3	1197.3	4×6	0.17	1.1	1.1	0.01	NO	HD-1	0.18	
WA_2	6 x	13.75			295.6	295.6	4×6	0.04	3.0	3.0	0.02	No	HD-1	0.47	

NORTH-SOUTH DIRECTION (Y)

			GRAVITY LOADS		COMPRESSION				TENSION						
Shear Wall	$\begin{gathered} \text { Wall } \\ \text { Thickness } \end{gathered}$	Height	Add'I DL	Add'I LL	$\begin{gathered} \mathrm{C}_{\mathrm{E}} \\ {[\mathrm{kip}]} \end{gathered}$	C (kip)	Post	DCR	$\begin{gathered} \mathrm{T}_{\mathrm{E}} \\ {[\mathrm{kip}]} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \text { [} \mathrm{kip} \text {] } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{d}_{\text {apost }} \\ {[\text { in }]} \\ \hline \end{gathered}$	$\begin{gathered} \text { INCLUDE } \\ D L ? \\ \hline \end{gathered}$	HDU Type	DCR	NOTES
W1_1	6 x	10.5			96.8	96.8	4×6	0.01	5.7	5.7	0.02	NO	HD-1	0.91	

TIEDOWN ANCHORAGE DESIGN

ACl318-19 Ch. 17
Tiedown anchors are sized using the ductile anchor method of ACI 318-14, 17.2.34.3 9(a)

INPUT:

$\mathrm{f}^{\prime} \mathrm{C}=$	3	ksi	[Concrete Strength]	Anchor Steel Strength:	Pullout Strength:	Breakout Strength:
$F y=$	36	ksi	[Anchor yield strength]	$\mathrm{N}_{\text {sa }}=\mathrm{Ae}^{*} \mathrm{Fu}$	$\mathrm{N}_{\mathrm{pn}}=\Psi_{\mathrm{c}, \mathrm{p}}{ }^{*} 8^{*} \mathrm{~A}_{\mathrm{brg}}{ }^{*} \mathrm{f}^{\prime} \mathrm{c}$	Based on anchor reinforcement capacity
$\mathrm{Fu}=$	58	ksi	[Anchor ultimate strength]		$A_{\text {brg }}=I_{\text {washer }}{ }^{2}-\pi \varnothing_{\text {A.B. }}{ }^{2} / 4$	$\mathrm{N}_{\mathrm{n}}=\mathrm{As}{ }^{*} \mathrm{Fy}$
Fy,bar =	60	ksi	[Rebar yield strength]			
$\Phi=$	0.75		[Breakout, Steel element]			
$\Phi=$	0.70		[Pullout \& Pryout]			

ANCHORAGE CHECKS:

	$\begin{aligned} & \mathrm{N}_{\mathrm{ua}} \\ & \text { (kip) } \end{aligned}$		$\varnothing_{\text {A.B. }}$ (in)	Plate Washer (in)	No. of Legs	Reinf. \#	Steel strength		Pullout Strength		Breakout strength		Ductility Check			
HDU Type			$\mathrm{N}_{\text {sa }}$				$\mathrm{N}_{\mathrm{ta}} / \Phi \mathrm{N}_{\mathrm{sa}}$	N_{pn}	$\mathrm{Nua}_{\text {a }} /$	N_{n}	$\mathrm{N}_{\mathrm{a}} / \Phi \mathrm{N}_{\mathrm{n}}$	(a)	(b)	(a)>(b)?		
HDU Type	ASD	LRFD					(kip)	$\mathrm{N}_{\text {ua }} / \Phi \mathrm{N}_{\text {sa }}$	(kip)	$\Phi \mathrm{N}_{\mathrm{pn}}$	(kip)	$\mathrm{N}_{\text {ua }} / \varphi \mathrm{N}_{\mathrm{n}}$	$\mathrm{N}_{\mathrm{ua}} / 1.2 \mathrm{~N}_{\text {sa }}$	$\mathrm{N}_{\mathrm{ua}} / \mathrm{N}_{\mathrm{c}}$	(a)>(b)?	
HD-1	8	11		0.875	3	2	4	26.8	0.55	151.2	0.10	24.0	0.61	0.34	0.07	О.к.

PLATE WASHER CHECK:
Check plate washer for bending

T_{u}	$=$	11	kip
w	$=$	3	in
t	$=$	1	in
F_{y}	$=$	36	ksi
$\emptyset_{\text {A.B. }}$	$=$	1	in
$\mathrm{A}_{\text {brg }}$	$=$	8.21	in^{2}
$\mathrm{~L}=\left(\mathrm{w}-\varnothing_{\text {A.B. }}\right) / 2$	$=$	1.00	in^{2}
$\mathrm{Z}=\mathrm{w}^{*} \mathrm{t}^{2} / 4$	$=$	0.75	in^{3}

$$
\begin{array}{rcl}
\mathrm{q}_{\mathrm{u}}=\mathrm{T}_{\mathrm{u}} / \mathrm{A}_{\mathrm{brg}} & =1.3 & \mathrm{ksi} \\
\mathrm{M}_{\mathrm{u}}=\mathrm{w}^{*} \mathrm{q}_{\mathrm{u}} \mathrm{~L}^{2} / 2 & =2.01 & \mathrm{kip}-\mathrm{in} \\
\Phi \mathrm{M}_{\mathrm{n}}=\Phi \mathrm{Fy}^{*} \mathrm{Z} & =24.3 & \\
& & \mathrm{kip}-\mathrm{in} \\
\mathrm{DCR} & =0.08 & \mathrm{OK}
\end{array}
$$

$=\left(w-\varnothing_{\text {A.B }}\right) / 2=1.00 \mathrm{in}$

D-1

Foundation Design

Seismic governs the design for foudnation.

Overturnning Seismic governs the design for overturning.
Consider the entire building as one unit
Min. effect ASD load combination (0.6-0.14Sds)D $+0.7 E$
$O T M:=0.7 \cdot M _E=97.125 \mathrm{kip} \cdot \mathrm{ft}$
Total weight of the building including foundation:
Ptotal $:=W+\gamma c \cdot((2 \cdot L+4 \cdot(B-B g b)) \cdot D g b \cdot B g b+(B+B g b) \cdot(L+B g b) \cdot t s l a b)=183.57 \mathrm{kip}$
Resisting Moment:
$M o:=(0.6-0.14 S d s) \cdot$ Ptotal $\cdot \frac{(B+B g b)}{2}=951.627 \mathrm{kip} \cdot \mathrm{ft}$

Factor of Safety against overturning moment:
$F S:=\frac{M o}{O T M}=9.798 \quad$ OK

KOff Consulting Engineers 45 Fremont Street, 28th Floor	Project:	Venetia Valley		RK	$\begin{aligned} & \text { Page } \\ & \hline-3 \end{aligned}$
			date:	5/15/2023	
Foundations design conform to California	Client:	SVA	Job No.: 2200173		
(415) 989-1004 Fax (415) 989-1552			Rev. No. 121.01		

$\underline{\mathbf{G r}} \mathbf{\varepsilon}=1500 \mathrm{psf}$ DL + LL CBC2022 - TABLE 1806.2
Lat $=100 \mathrm{pcf}$

Lat $=130$ psf \quad Basic Load Combinations

Footing Information

Weight
60 kips

Location Foundation/Second Floor

Earthquake Loads

$\mathrm{S}_{\mathrm{DS}}=$	1.20	g
$\mathrm{P}_{\mathrm{E}}=$	7	kips
$\mathrm{P}_{\mathrm{E}, \mathrm{D} \text { ist. }}=$	12	ft
$\mathrm{M}_{\mathrm{E}, \mathrm{PE}}=$	86	$\mathrm{k}-\mathrm{ft}$
$\mathrm{M}_{\mathrm{Eh}}=$	53	$\mathrm{k}-\mathrm{ft}$
$\mathrm{M}_{\mathrm{E}, \text { Total }}=$	140	$\mathrm{k}-\mathrm{ft}$

Seismic Design Spectral Acceleration Vertical seismic force resultant Horizontal distance from point "a" to P_{E} (taken at Point a) (taken at Point a) (taken at Point a)

Foundation Dimensions

Component	Depth (ft)	Width (ft)	Length (ft)	Notes
Footing	2.00	1.50	24.00	
Surcharge	1.00			

Gravity Loads: Forces and Moments ($\mathrm{D}+\mathrm{L}$)

Load	Dead (k)	Live (k)	Dist. (ft)	Dead (k-ft)	Live (k-ft)	Notes
Footing	11		12.00	130		
Surcharge	4		12.00	52		
Roof LL		1	12.00		6	
P_{1}	5	4	13.25	66	52	
P_{2}						
P_{3}						
P_{4}						
P_{5}						
P_{6}						
P_{7}						
P_{8}						
P_{9}						
P_{10}						
Sum	20	4	----	248	52	Sum ex

Allowable Soil Bearing Pressures

Soil density	$\rho=$	120
Add displaced soil?		No

Loads	qaalow,net	qaalow,gross
$D+L$	1500 psf	1500 psf
$D+L+E$	1500 psf	1500 psf

W/O added displaced soil (depth accounted in $\mathrm{q}_{\text {allow,net }}$)
$q_{\text {allow,gross }}=q_{\text {allow,net }}$
With additional displaced soil increase
$q_{\text {allow,gross }}=q_{\text {allow,net }}+($ displaced soil wt/ftg area)
Values for $\mathrm{q}_{\text {allow }}$ obtained from soils report

KOIf Consulting Engineers	Project:	Venetia Valley		RK	Page
45 Fremont Street, 28th Floor			date	5/15/2023	
Foundations design conform to California	Client:	SVA	Job No.: 2200173		
(415) 989-1004 Fax (415) 989-1552			Rev. No. 121.01		

Required Footing Width

$$
\begin{align*}
\mathrm{W}_{\text {reqd }}= & \left(\text { if inside kern, } \mathrm{e} \leq \mathrm{L}_{\text {fgg }} / 6\right) \tag{Eq.2}\\
& W_{\text {reqd }}=\frac{R}{q_{\text {allow }} L_{\text {ftg }}}\left(1+\frac{6 e}{L_{\text {ftg }}}\right) \tag{Eq.1}
\end{align*}
$$

(if outside kern, $\mathrm{e}>\mathrm{L}_{\mathrm{ffg}} / 6$)

$$
\begin{array}{r}
W_{\text {reqd }}=\frac{2 R}{3 q_{\text {allow }}(L-x)}, \begin{array}{r}
\text { or } \frac{2 R}{3 q_{\text {allow }} x} \\
(x>\mathrm{L} / 2) \\
(x \leq \mathrm{L} / 2)
\end{array}
\end{array}
$$

ASD Load Combinations for Soil Bearing

Load Combination 1: D (CBC 2022 Eq. 16-8)

$\mathrm{M}_{\mathrm{a}}=$	248	kip-ft
$\mathrm{R}=$	20	kips
$\mathrm{x}=$	12.31	ft
$\mathrm{e}=$	0.31	ft
$\mathrm{e}_{\text {kerr }}=$	4.00	ft
Inside kern?	Yes	
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 6 0}$	ft
Sufficient width?	$\mathbf{O K}$	

Check: OK

Sum of the moments about left end Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{ftg}} / 2\right)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\text {fig }} / 6$
Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kerm }}$
Required width (see Eq. 1 and Eq. 2 above)

Load Combination 2: D + L (CBC 2022 Eq. 16-9)

$\mathrm{M}_{\mathrm{a}}=$	299	kip-ft
$\mathrm{R}=$	24	kips
$\mathrm{x}=$	12.46	ft
$\mathrm{e}=$	0.46	ft
$\mathrm{e}_{\text {kern }}=$	4.00	ft
Inside kern?	Yes	
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 7 4}$	$\mathbf{f t}$
Sufficient width?	$\mathbf{O K}$	

Check: OK
Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\text {fig }} / 2\right)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\text {fig }} / 6$
Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kern }}$
Required width (see Eq. 1 and Eq. 2 above)

KOIf Consulting Engineers	Project:	Venetia Valley		RK	Page
45 Fremont Street, 28th Floor			date	5/15/2023	
Foundations design conform to California	Client:	SVA	Job No.: 2200173		
(415) 989-1004 Fax (415) 989-1552			Rev. No. 121.01		

Load Combination 3: D + Lr (CBC 2022 Eq. 16-10)

$\mathrm{M}_{\mathrm{a}}=$	254	kip-ft
$\mathrm{R}=$	21	kip
$\mathrm{x}=$	12.30	ft
$\mathrm{e}=$	0.30	ft
$\mathrm{e}_{\text {kern }}=$	4.00	ft
Inside kern?	Yes	
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 6 2}$	$\mathbf{f t}$

Load Combination 4: $\quad \mathrm{D}+\mathbf{0 . 7 5 (L) + 0 . 7 5 (L r) \quad (C B C} 2022$ Eq. 16-11) Check: OK

$\mathrm{M}_{\mathrm{a}}=$	291	kip-ft	Sum of the moments about left end
$\mathrm{R}=$	23	kips	Factored load reaction
$\mathrm{x}=$	12.42	kips	Resultant location from left end, $\mathrm{x}=\mathrm{M}_{\mathrm{a}} / \mathrm{R}$
$\mathrm{e}=$	0.42	ft	Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{ftg}} / 2\right)$
$\mathrm{e}_{\text {kern }}=$	4.00	ft	Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\mathrm{ftg}} / 6$
Inside kern?	Yes		Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kern }}$
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 7 2}$	$\mathbf{f t}$	
Sufficient width?	$\mathbf{O K}$		Required width (see Eq. 1 and Eq. 2 above)

Load Combination 8a: (1 + 0.14 SDS) D + 0.7(Eh) (CBC 2022 Eq. 16-12)
Check: OK

$\mathrm{M}_{\mathrm{a}}=$	387	kip-ft
$\mathrm{R}=$	29	kips
$\mathrm{x}=$	13.56	ft
$\mathrm{e}=$	1.56	ft

Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{ftg}} / 2\right)$

40I 45 Fremont Street, 28th Floor Foundations design conform to California (415) 989-1004 Fax (415) 989-1552	Project:	Venetia Valley		y: RK	Page	
				date: 5/15/2023		
	Client: SVA	SVA			Job No.: 2200173	
$\mathrm{e}_{\text {kern }}=$	4.00	ft	Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\text {ftg }} / 6$			
Inside kern?	Yes		Resultant is inside kern if $\mathrm{e} \leq$	$\leq \mathrm{e}_{\text {kerr }}$		
$\begin{array}{r} \mathbf{W}_{\text {reqd }}= \\ \text { Sufficient width? } \end{array}$	$\begin{array}{r} 1.10 \\ \text { OK } \end{array}$	ft	Required width (see Eq. 1 an	and Eq. 2 abo		

Load Combination 8b: (1-0.14 SDS) D-0.7(Eh) (CBC 2022 Eq. 16-12) Check: OK

$\mathrm{M}_{\mathrm{a}}=$	108	kip-ft	Sum of the moments about left end
$\mathrm{R}=$	12	kips	Factored load reaction
$\mathrm{x}=$	9.26	ft	Resultant location from left end, $x=M_{a} / R$
e	-2.74	ft	Eccentricity, e = x-($\left.L_{\text {tg }} / 2\right)$
$\mathrm{e}_{\text {kern }}=$	4.00	ft	Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\text {fig }} / 6$
Inside kern?	Yes		Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kern }}$
$\mathbf{W}_{\text {reqd }}=$	0.55	ft	Required width (see Eq. 1 and Eq. 2 above)
Sufficient width?	OK		

$\mathrm{M}_{\mathrm{a}}=$	391	kip-ft
$\mathrm{R}=$	29	kips
$\mathrm{x}=$	13.32	ft
$\mathrm{e}=$	1.32	ft
$\mathrm{e}_{\text {kern }}=$	4.00	ft
Inside kern?	Yes	
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{1 . 0 8}$	$\mathbf{f t}$
Sufficient width?	$\mathbf{O K}$	

Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{fg}} / 2\right)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\mathrm{ftg}} / 6$
Resultant is inside kern if $e \leq e_{\text {kern }}$
Required width (see Eq. 1 and Eq. 2 above)

For $\mathrm{W}_{\text {ftg }}=$	1.50	$\mathrm{ft} .$,	$\mathrm{q}_{\text {max }}=$	1084	at dist. $=$	24.00
		ft				
$\mathrm{q}_{\text {min }}=$	547	at dist. $=$	0.00	ft		

COIf Consulting Engineers 45 Fremont Street, 28th Floor Foundations design conform to California (415) 989-1004 Fax (415) 989-1552	Project:	Venetia Valley		RK	$\begin{aligned} & \text { Page } \\ & \text { P-7 } \end{aligned}$
			date:	5/15/2023	
	Client:	SVA	Job No.: 2200173		
			Rev. No. 121.01		
Soil pressure distribution] -		

Load Combination 9b: (1-0.105 SDS) D-0.525(Eh) + 0.75(L) (CBC 2022 Eq. 16-14) Check: OK

Soil pressure distribution

Check: OK
Load Combination 10a: (0.6)(D) + 0.7(Eh) (CBC 2022 Eq. 16-16)
Sum of the moments about left end
$\mathrm{M}_{\mathrm{a}}=253$ kip-ft
$\mathrm{R}=17$ kips
$\mathrm{x}=14.80 \mathrm{ft}$
$\mathrm{e}=2.80 \mathrm{ft}$
$\mathrm{e}_{\text {kern }}=4.00 \mathrm{ft}$
Inside kern? Yes
$\mathbf{W}_{\text {reqd }}=0.81$ ft Required width (see Eq. 1 and Eq. 2 above)
Sufficient width? OK

For $\mathrm{W}_{\mathrm{ftg}}=1.50$ ft., $\quad \mathrm{q}_{\max }=809$ at dist. $=\quad 24.00 \mathrm{ft}$
at dist. $=0.00 \mathrm{ft}$
Soil pressure distribution

Load Combination 10b: (0.6)(D)-0.7(Eh) (CBC 2022 Eq. 16-16) Check: OK

$\mathrm{M}_{\mathrm{a}}=$	44	kip-ft
$\mathrm{R}=$	7	kips
$\mathrm{x}=$	6.24	ft
$\mathrm{e}=$	-5.76	ft
$\mathrm{e}_{\text {kern }}=$	4.00	ft
Inside kern?	No	

Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{ftg}} / 2\right)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\text {fig }} / 6$
Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kem }}$

Grade Beam - Short Side:

Consider the grade beam in the long direction resisting half of the seismic moment.
Grade Beam Length in Long Direction: $L g b:=B+B g b=24 f t$

From previous calculation, the highest uniform bearing load is 837 psf from load combination: ($1+0.14$ SDS) $D+0.7$ (Eh)
Using conversion factor of 1.4 to convert the max soil pressure into LRFD
Max. Soil Pressure: $\quad q u:=1.4 \cdot 837 p s f=1171.8 p s f$
Uniform Linear Loads Along Grade Beam: $\quad w u:=q u \cdot B g b=1.758 \mathrm{klf}$
Max. Momont per AISC Table 3-22c: $\quad M u:=0.1 \cdot w u \cdot L g b^{2}=101.244 \mathrm{ft} \cdot \mathrm{kip}$
Max. Shear per AISC Table 3-22c: $\quad V u:=1.1 \cdot w u \cdot L g b=46.403 \mathrm{kip}$

Flexural

Use (3) \#8bars at bottom \& \#4 Ties

$$
\begin{aligned}
& d b:=1 \mathrm{in} \quad A _b a r:=0.79 \mathrm{in}^{2} \quad n:=3 \quad \lambda:=1.0 \quad d b v:=0.5 \mathrm{in} \\
& d:=D g b-3 \mathrm{in}-0.5 \cdot d b=20.5 \mathrm{in} \\
& \text { Asmin }:=\max \left(\frac{3 \cdot \sqrt{3000} \mathrm{psi} \cdot \mathrm{Bgb} \cdot d}{f y}, 200 \mathrm{psi} \cdot B \mathrm{gb} \cdot \frac{\mathrm{~d}}{\mathrm{fy}}\right)=1.23 \mathrm{in}^{2} \\
& A s:=n \cdot A _b a r=2.37 \mathrm{in}^{2}>A \operatorname{smin}=1.23 \mathrm{in}^{2} \\
& a:=\frac{A s \cdot f y}{0.85 B g b \cdot f^{\prime} c}=3.098 \mathrm{in} \\
& \phi M n:=0.9 \cdot A s \cdot f y \cdot\left(d-\frac{a}{2}\right)=202.112 \mathrm{kip} \cdot f t>M u=101.244 \mathrm{kip} \cdot f t \text { OK }
\end{aligned}
$$

Shear
Provide shear reinforcing: \#4 @ 12" o.c.

$$
\begin{aligned}
& \phi V c:=2 \cdot 0.75 \cdot d \cdot 1 \mathrm{ft} \cdot \lambda \cdot \sqrt{3000} p s i=20.211 \mathrm{kip} \\
& s:=12 \mathrm{in} \quad A v:=0.2 \mathrm{in}^{2} \\
& \phi V \mathrm{~s}:=\frac{2 \cdot A v \cdot f y \cdot d}{s}=41 \mathrm{kip} \\
& \phi V:=\phi V \mathrm{~s}+\phi V c=61.211 \mathrm{kip}>V u=46.403 \mathrm{kip}
\end{aligned}
$$

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\underline{\mathbf{G r}} \mathbf{\varepsilon}=1500 \mathrm{psf}$ DL + LL CBC2022 - TABLE 1806.2
Lat $=100 \mathrm{pcf}$

Lat $=130$ psf \quad Basic Load Combinations

Footing Information

Weight
60 kips

Location Foundation/Second Floor

Earthquake Loads

$\mathrm{S}_{\text {DS }}=$	1.20	g	Seismic Design Spectral Acc
$\mathrm{P}_{\mathrm{E}}=$	7	kips	Vertical seismic force resulta
$\mathrm{P}_{\mathrm{E}, \text { Dist. }}=$	18	$f t$	Horizontal distance from poin
$\mathrm{M}_{\mathrm{E}, \mathrm{PE}}=$	131	k-ft	(taken at Point a)
$\mathrm{M}_{\mathrm{Eh}}=$	38	k-ft	(taken at Point a)
$\mathrm{M}_{\mathrm{E}, \text { Total }}=$	169	k-ft	(taken at Point a)
ation Dimensions			
Component	Depth (ft)	Width (ft)	Length (ft) Notes
Footing	2.00	1.50	36.50
Surcharge	1.00		

Gravity Loads: Forces and Moments ($\mathrm{D}+\mathrm{L}$)

Load	Dead (k)	Live (k)	Dist. (ft)	Dead (k-ft)	Live (k-ft)	Notes
Footing	16		18.25	300		
Surcharge	7		18.25	120		
Roof LL		1	18.25		9	
P_{1}						
P_{2}						
P_{3}						
P_{4}						
P_{5}						
P_{6}						
P_{7}						
P_{8}						
P_{9}						
P_{10}						
Sum	23	0	----	420	0	Sum ex

Allowable Soil Bearing Pressures

Soil density	$\rho=$	120
Add displaced soil?		No

Loads	$\mathrm{q}_{\text {allow,net }}$	Qallow,gross	W/O added displaced soil (depth accounted in $\mathrm{q}_{\text {allow,net }}$)
D + L	1500 psf	1500 psf	$q_{\text {allow,gross }}=q_{\text {allow,net }}$
D + L + E	1500 psf	1500 psf	With additional displaced soil increase

				Page

Required Footing Width

$$
\begin{align*}
\mathrm{W}_{\text {reqd }}= & \left(\text { if inside kern, } \mathrm{e} \leq \mathrm{L}_{\text {fg }} / 6\right) \tag{Eq.2}\\
& W_{\text {reqd }}=\frac{R}{q_{\text {allow }} L_{\text {ftg }}}\left(1+\frac{6 e}{L_{\text {ftg }}}\right) \tag{Eq.1}
\end{align*}
$$

(if outside kern, $\mathrm{e}>\mathrm{L}_{\mathrm{ffg}} / 6$)

$$
\begin{array}{r}
W_{\text {reqd }}=\frac{2 R}{3 q_{\text {allow }}(L-x)}, \begin{array}{r}
\text { or } \frac{2 R}{3 q_{\text {allow }} x} \\
(x>\mathrm{L} / 2) \\
(x \leq \mathrm{L} / 2)
\end{array}
\end{array}
$$

ASD Load Combinations for Soil Bearing

Load Combination 1: D (CBC 2022 Eq. 16-8)

$\mathrm{M}_{\mathrm{a}}=$	420	kip-ft
$\mathrm{R}=$	23	kips
$\mathrm{x}=$	18.25	ft
$\mathrm{e}=$	0.00	ft
$\mathrm{e}_{\text {kerr }}=$	6.08	ft
Inside kern?	Yes	
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 4 2}$	ft
Sufficient width?	$\mathbf{O K}$	

Sum of the moments about left end Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{ftg}} / 2\right)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\text {fig }} / 6$
Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kerm }}$
Required width (see Eq. 1 and Eq. 2 above)

Load Combination 2: D + L (CBC 2022 Eq. 16-9)
Check: OK

$\mathrm{M}_{\mathrm{a}}=$	420	kip-ft
$\mathrm{R}=$	23	kips
$\mathrm{x}=$	18.25	ft
$\mathrm{e}=$	0.00	ft
$\mathrm{e}_{\text {ker }}=$	6.08	ft
Inside kern?	Yes	
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 4 2}$	$\mathbf{f t}$
Sufficient width?	OK	

Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\text {fig }} / 2\right)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\text {ftg }} / 6$
Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kern }}$
Required width (see Eq. 1 and Eq. 2 above)

For $\mathrm{W}_{\mathrm{ftg}}=1.50 \quad \mathrm{ft} ., \quad \mathrm{q}_{\max }=420$ at dist. $=\quad 36.50 \mathrm{ft}$
$\mathrm{q}_{\text {min }}=420 \quad$ at dist. $=\quad 0.00 \mathrm{ft}$

				Page

Load Combination 3: D + Lr (CBC ${ }^{2022}$ Eq. 16-10)

$\mathrm{M}_{\mathrm{a}}=429 \quad$ kip-ft
$\mathrm{R}=23$ kip
$\mathrm{x}=18.25 \mathrm{ft}$
e $=0.00 \quad \mathrm{ft}$
$\mathrm{e}_{\text {kerr }}=6.08 \mathrm{ft}$ Inside kern? Yes
$\mathrm{W}_{\text {reqd }}=0.43 \mathrm{ft}$ Sufficient width? OK

For $\mathrm{W}_{\mathrm{ftg}}=\quad 1.50$

$$
\begin{array}{rll}
\text { ft., } & \mathrm{q}_{\max }= & 429 \\
& \mathrm{q}_{\min }= & 429
\end{array}
$$

at dist. $=36.50 \mathrm{ft}$
at dist. $=\quad 0.00 \mathrm{ft}$

Load Combination 4: $\quad \mathrm{D}+\mathbf{0 . 7 5 (\mathrm { L }) + \mathbf { 0 . 7 5 } (\mathrm { Lr }) \quad \text { (CBC } 2 0 2 2 \text { Eq. 16-11) Check: OK }}$

$\mathrm{M}_{\mathrm{a}}=$	427	kip-ft
$\mathrm{R}=$	23	kips
$\mathrm{x}=$	18.25	kips
$\mathrm{e}=$	0.00	ft
$\mathrm{e}_{\text {kerr }}=$	6.08	ft
Inside kern?	Yes	
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 4 3}$	ft
Sufficient width?	$\mathbf{O K}$	

Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{ftg}} / 2\right)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\text {fig }} / 6$
Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kern }}$
Required width (see Eq. 1 and Eq. 2 above) Sufficient width? OK

Load Combination 8a: (1 + 0.14 SDS) D + 0.7(Eh) (CBC 2022 Eq. 16-12)
Check: OK

$\mathrm{M}_{\mathrm{a}}=$	609	kip-ft
$\mathrm{R}=$	32	kips
$\mathrm{x}=$	19.08	ft
$\mathrm{e}=$	0.83	ft

Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{tg}} / 2\right)$

kpff $_{\text {Consulting Engineers }}$ 45 Fremont Street, 28th Floor Foundations design conform to California (415) 989-1004 Fax (415) 989-1552	Project:	Venetia Valley		By: RK	\|Page
				date: 5/15/2023	
	Client: SVA			Job No.: 2200173	
				Rev. No. 121.01	
$\mathrm{e}_{\text {kern }}=$	6.08	ft	Kern distance, $\mathrm{e}_{\text {kerr }}=\mathrm{L}_{\text {ftg }} / 6$		
Inside kern?	Yes		Resultant is inside kern if e \leq	$\leq \mathrm{e}_{\text {kern }}$	
$\mathbf{W}_{\text {reqd }}=$ Sufficient width?	$\begin{gathered} 0.66 \\ \text { OK } \end{gathered}$	ft	Required width (see Eq. 1 and	and Eq. 2 abov	

Load Combination 8b: (1-0.14 SDS) D-0.7(Eh) (CBC
Check: OK

$\mathrm{M}_{\mathrm{a}}=$	231	kip-ft
$\mathrm{R}=$	14	kips
$\mathrm{x}=$	16.36	ft
$\mathrm{e}=$	-1.89	ft
$\mathrm{e}_{\text {kern }}=$	6.08	ft
Inside kern?	Yes	
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 3 4}$	$\mathbf{f t}$
Sufficient width?	$\mathbf{O K}$	

Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\text {fg }} / 2\right)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\mathrm{ftg}} / 6$
Resultant is inside kern if $e \leq e_{\text {kern }}$
Required width (see Eq. 1 and Eq. 2 above)

$\mathrm{M}_{\mathrm{a}}=$	561	$\mathrm{kip-ft}$
$\mathrm{R}=$	30	kips
$\mathrm{x}=$	18.92	ft
$\mathrm{e}=$	0.67	ft
$\mathrm{e}_{\text {kerm }}=$	6.08	ft
Inside kern?	Yes	
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 6 0}$	$\mathbf{f t}$
Sufficient width?	$\mathbf{O K}$	

Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{tg}} / 2\right)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\mathrm{ftg}} / 6$
Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kerm }}$
Required width (see Eq. 1 and Eq. 2 above)

For $W_{\text {fig }}=1.50 \quad$ ft., $\quad \mathrm{q}_{\max }=602 \quad$ at dist. $=\quad 36.50 \mathrm{ft}$

Soil pressure distribution

Load Combination 9b: (1-0.105 SDS) D-0.525(Eh) + 0.75(L) (CBC 2022 Eq. 16-14)
Check: OK

Load Combination 10a: (0.6)(D) + 0.7(Eh) (CBC 2022 Eq. 16-16)
Check: OK

$\mathrm{M}_{\mathrm{a}}=$	379	kip-ft	Sum of the moments about left end
$\mathrm{R}=$	19	kips	Factored load reaction
$\mathrm{x}=$	20.11	ft	Resultant location from left end, $\mathrm{x}=\mathrm{M}_{\mathrm{a}} / \mathrm{R}$
$\mathrm{e}=$	1.86	ft	Eccentricity, $\mathrm{e}=\mathrm{x}-\left(\mathrm{L}_{\mathrm{ftg}} / 2\right)$
$\mathrm{e}_{\text {kern }}=$	6.08	ft	Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\mathrm{ftg}} / 6$
Inside kern?	Yes		Resultant is inside kern if e $\leq \mathrm{e}_{\text {kern }}$
$\mathbf{W}_{\text {reqd }}=$	$\mathbf{0 . 4 5}$	$\mathbf{f t}$	
Sufficient width?	$\mathbf{O K}$		Required width (see Eq. 1 and Eq. 2 above)

Load Combination 10b: (0.6)(D) - 0.7(Eh) (CBC 2022 Eq. 16-16) Check: OK

$\mathrm{M}_{\mathrm{a}}=$	125	kip-ft
$\mathrm{R}=$	9	kips
$\mathrm{x}=$	14.25	ft
$\mathrm{e}=$	-4.00	ft
$\mathrm{e}_{\text {kern }}=$	6.08	ft
Inside kern?	Yes	

Sum of the moments about left end
Factored load reaction
Resultant location from left end, $x=M_{a} / R$
Eccentricity, e =x-(Lthg $/ 2)$
Kern distance, $\mathrm{e}_{\text {kern }}=\mathrm{L}_{\mathrm{ftg}} / 6$
Resultant is inside kern if $\mathrm{e} \leq \mathrm{e}_{\text {kern }}$

-	Project:	enetia Valley		RK	P- Page
45 Fremont Street, 28th Floor Foundations design conform to California			date: 5/15/2023		
	Client:	SVA	Job No.: 2200173		
(415) 989-1004 Fax (415) 989-1552			Rev. No. 121.01		
$\mathbf{W}_{\text {reqd }}=$ Sufficient width?	$\begin{array}{r} \hline 0.27 \\ \text { OK } \end{array}$	ft	and	Eq. 2 abo	

Grade Beam - Long Side:

Consider the grade beam in the long direction resisting half of the seismic moment.
Grade Beam Length in Long Direction: $L g b:=L+B g b=36.3 \mathrm{ft}$

From previous calculation, the highest uniform bearing load is 613 psf from load combination: ($1+0.14$ SDS) $\mathrm{D}+0.7$ (Eh)
Using conversion factor of 1.4 to convert the max soil pressure into LRFD
Max. Soil Pressure: $\quad q u:=1.4 \cdot 613 p s f=858.2 p s f$
Uniform Linear Loads Along Grade Beam: $\quad w u:=q u \cdot B g b=1.287 \mathrm{klf}$
Max. Momont per AISC Table 3-22c: $\quad M u:=0.1 \cdot w u \cdot L g b^{2}=169.626 \mathrm{ft} \cdot \mathrm{kip}$
Max. Shear per AISC Table 3-22c: $\quad V u:=1.1 \cdot w u \cdot L g b=51.402 \mathrm{kip}$

Flexural

Use (3) \#8bars at bottom \& \#4 Ties

$$
\begin{aligned}
& d b:=1 \text { in } \quad A _b a r:=0.79 \mathrm{in}^{2} \quad n:=3 \quad \lambda:=1.0 \quad d b v:=0.5 \mathrm{in} \\
& d:=D g b-3 \mathrm{in}-0.5 \cdot d b=20.5 \mathrm{in} \\
& \text { Asmin }:=\max \left(\frac{3 \cdot \sqrt{3000} \mathrm{psi} \cdot B g b \cdot d}{f y}, 200 \mathrm{psi} \cdot B \mathrm{Bb} \cdot \frac{\mathrm{~d}}{\mathrm{fy}}\right)=1.23 \mathrm{in}^{2} \\
& A s:=n \cdot A_{-} b a r=2.37 \mathrm{in}^{2}>A s m i n=1.23 \mathrm{in}^{2} \\
& a:=\frac{A s \cdot f y}{0.85 B g b \cdot f^{\prime} \mathrm{c}}=3.098 \mathrm{in} \\
& \phi M n:=0.9 \cdot \mathrm{As} \cdot f y \cdot\left(d-\frac{a}{2}\right)=202.112 \mathrm{kip} \cdot f t>M u=169.626 \mathrm{kip} \cdot f t \text { OK }
\end{aligned}
$$

Shear
Provide shear reinforcing: \#4 @ 12" o.c.

$$
\begin{aligned}
& \phi V c:=2 \cdot 0.75 \cdot d \cdot 1 \mathrm{ft} \cdot \lambda \cdot \sqrt{3000} p s i=20.211 \mathrm{kip} \\
& s:=12 \mathrm{in} \quad A v:=0.2 \mathrm{in}^{2} \\
& \phi V \mathrm{~s}:=\frac{2 \cdot A v \cdot f y \cdot d}{s}=41 \mathrm{kip} \\
& \phi V:=\phi V \mathrm{~s}+\phi V c=61.211 \mathrm{kip}>V u=51.402 \mathrm{kip}
\end{aligned}
$$

E1 MISCELLANEOUS

1-MFI Consulting Engineers 45 Fremont Street, 28th Floor San Francisco, California 94105 (415) 989-1004 FAX (415) 989-1552	project:	
	location:	
	client:	
	EQUIPMENT ANCHORAGE-WALL MOUNTED	

EQUIPMENT ANCHORAGE-WALL MOUNTED
REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13

Equipment ID = Water Heater
Equipment Description $=$ Water Heater - Wall Mounted
Base Material = Wall Mounted

$\mathrm{W}_{\mathrm{p}}=$ weight of equipment $=230 \quad \mathrm{lb}$ $I=$ overall length $=25 \quad$ in $w=$ overall width $=18$ in $d=$ overall depth $=18$ in

Center of Mass Location
$C G_{\mathrm{x}}=$ dist. in x -dir from Origin $=\quad 9$ in $C G_{y}=$ dist. in y-dir from Origin $=\quad 9$ in $\mathrm{CG}_{\mathrm{z}}=$ dist. in z-dir from Origin $=16.6666667$ in $\mathrm{n}=\#$ of anchors $=4$
$\mathrm{m}=$ \# of fastener @ each anchor = 1

Seismic Accelerations	
$\mathrm{a}_{\mathrm{p}}=$ amplification factor $=$	1
$\mathrm{R}_{\mathrm{p}}=$ response factor $=$	2.5
$\mathrm{S}_{\text {DS }}=$ spectral acceleration $=$	1.2
$\Omega_{0} \mathrm{Fh}=$ ASCE 7-10: $13.3-1,13.3-2,13.3-3=$	264.96 lb
$\Omega_{0} \mathrm{~F}_{\mathrm{v}}=$ vertical force $=0.2 \mathrm{~S}_{\text {DS }} \mathrm{W}_{\mathrm{p}}=$	110.4 lb
Bolt Group Properties	
$\mathrm{x}_{\text {bar }}=\mathrm{y}$-dist. of C.R.from Origin $=$	0 in
$\mathrm{y}_{\text {bar }}=\mathrm{y}$-dist. of C.R.from Origin $=$	9
$\mathrm{z}_{\text {bar }}=\mathrm{z}$-dist. of C.R.from Origin =	12 in
$e_{x}=x$-eccen. of C.G.from C.R. $=$	9 in
$e_{y}=y$-eccen. of C.G.from C.R. $=$	0 in
$\mathrm{e}_{\mathrm{z}}=\mathrm{z}$-eccen. of C.G.from C.R. $=$	4.66666667 in
$\mathrm{I}_{\mathrm{y}}=\sum\left(\mathrm{d}_{\mathrm{y}}{ }^{2}\right)=$	324.0 in
$\mathrm{I}_{\mathrm{z}}=\sum\left(\mathrm{d}_{\mathrm{z}}{ }^{2}\right)=$	144.0 in
$\mathrm{I}_{\text {polar }}=\mathrm{I}_{\mathrm{y}}+\mathrm{I}_{\mathrm{z}}=$	468.0 in

$$
\begin{array}{rlrlr}
\mathrm{lp} & =\text { Imp. Factor }= & 1 & \mathrm{z}= & 1 \\
\Omega_{\mathrm{o}} & =\text { Over. Factor }= & 2 & \mathrm{~h}= & 1 \\
\text { Apply } \Omega_{0} & = & \text { Yes } & \\
& =1.16 \mathrm{Wp} & \text { LRFD DESIGN } & & \\
& =0.48 \mathrm{Wp} & \text { LRFD DESIGN } & &
\end{array}
$$

ANCHOR LOCATIONS (UP TO 20 ANCHORS)

Bolt \#	$\mathrm{Y}(\mathrm{W})$	$\mathrm{Z}(\mathrm{L})$	d_{y}	d_{z}	$\mathrm{d}_{\mathrm{y}}{ }^{2}$	$\mathrm{~d}_{\mathrm{z}}{ }^{2}$	$\mathrm{~d}^{2}$
1	0.00	6.00	-9.0	-6.0	81.0	36.0	117.0
2	0.00	18.00	-9.0	6.0	81.0	36.0	117.0
3	18.00	6.00	9.0	-6.0	81.0	36.0	117.0
4	18.00	18.00	9.0	6.0	81.0	36.0	117.0
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

project:					
location:					
client:					
EQUIPMENT ANCHORAGE-WALL MOUNTED					

EQUIPMENT ANCHORAGE-WALL MOUNTED
REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13
FASTENER FORCES: LOAD CASE 1: SEISMIC LOADING IN X-X DIRECTION + Z-Z DIRECTION

$$
\mathrm{T}_{\text {fastener }}=\mathrm{F}_{\mathrm{ph}}{ }^{*} E L_{\text {factor }} /\left(\mathrm{m}^{*} \mathrm{n}\right)+\mathrm{M}_{\mathrm{y}} * \mathrm{~d}_{\mathrm{z}} / I_{\mathrm{z}}-\mathrm{M}_{\mathrm{z}}{ }^{*} \mathrm{~d}_{\mathrm{y}} / \mathrm{I}_{\mathrm{y}} \quad \text { (negative tension indicates compression) }
$$

$V_{y \text { fastener }}=-M_{x}{ }^{*} d_{z} / I_{p}$
$\mathrm{V}_{\mathrm{z} \text { fastener }}=\mathrm{M}_{\mathrm{x}}{ }^{*} \mathrm{~d}_{\mathrm{y}} / I_{\mathrm{p}}-\left(\mathrm{W}_{\mathrm{p}}{ }^{*} \mathrm{DL}_{\text {factor }}+\mathrm{F}_{\mathrm{pv}}{ }^{*} \mathrm{EL}_{\text {factor }}\right) /\left(\mathrm{m}^{*} \mathrm{n}\right)$

$$
\mathrm{V}_{\mathrm{r}}=\left(\mathrm{v}_{\mathrm{y}}^{2}+\mathrm{V}_{\mathrm{z}}^{2}\right)^{0.5}
$$

			LRFD LEVEL				ASD LEVEL			
Bolt \#	d_{y} (in)	d_{z} (in)	T (lbs)	V_{y} (lbs)	V_{z} (lbs)	V_{r} (Ibs)	T (lbs)	V_{y} (lbs)	$\mathrm{V}_{\mathbf{z}}$ (lbs)	V_{r} (lbs)
1	-9	-6	-27.14	0.00	-96.60	96.60	-32.80	0.00	-76.82	76.82
2	-9	6	159.62	0.00	-96.60	96.60	125.53	0.00	-76.82	76.82
3	9	-6	-27.14	0.00	-96.60	96.60	-32.80	0.00	-76.82	76.82
4	9	6	159.62	0.00	-96.60	96.60	125.53	0.00	-76.82	76.82
5										
20										

$\begin{aligned} & \text { MAX LOAD CASE 1: } \\ & \text { (X-X LOADING) } \end{aligned}$	LRFD			ASD	
	Bolt 2	Tension (T)=	159.62 lbs	Tension (T)=	125.53 lbs
	Bolt 1	Shear (V)=	96.60 lbs	Shear (V)=	76.82 lbs

kpff Consulting Engineers 45 Fremont Street, 28th Floor San Francisco, California 94105 (415) 989-1004 FAX (415) 989-1552	project:		
	location:		
	client:		
	EQUIPMENT ANCHORAGE-WALL MOUNTED		

EQUIPMENT ANCHORAGE-WALL MOUNTED
REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13
FASTENER FORCES: LOAD CASE 2: SEISMIC LOADING IN Y-Y DIRECTION + Z-Z DIRECTION

1 Consulting Engineers			

EQUIPMENT ANCHORAGE-WALL MOUNTED
REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13

Equipment ID = Water Heater
Equipment Description $=$ Water Heater - Wall Mounted
Base Material = Wall Mounted

$\mathrm{W}_{\mathrm{p}}=$ weight of equipment $=25 \quad \mathrm{lb}$ $I=$ overall length $=12$ in $w=$ overall width $=6$ in $d=$ overall depth $=12$ in

Center of Mass Location
$C G_{\mathrm{x}}=$ dist. in x -dir from Origin $=$
$C G_{y}=$ dist. in y-dir from Origin $=$
$\mathrm{CG}_{\mathrm{z}}=$ dist. in z -dir from Origin $=\quad 8$ in $\mathrm{n}=$ \# of anchors =
$\mathrm{m}=$ \# of fastener @ each anchor =

$$
\begin{array}{rlll}
\mathrm{lp}=\operatorname{Imp} . \text { Factor }= & 1 & \mathrm{z}=1 & \mathrm{ft} \\
\Omega_{\mathrm{o}}=\text { Over. } \text { Factor }= & 2 & \mathrm{~h}=1 & \mathrm{ft}
\end{array}
$$

$$
\text { Apply } \Omega_{0}=\quad \text { Yes }
$$

$$
\begin{array}{ll}
=1.16 \mathrm{Wp} & \text { LRFD DESIGN } \\
=0.48 \mathrm{Wp} & \text { LRFD DESIGN }
\end{array}
$$

ANCHOR LOCATIONS (UP TO 20 ANCHORS)

Bolt \#	$\mathrm{Y}(\mathrm{W})$	$\mathrm{Z}(\mathrm{L})$	d_{y}	d_{z}	$\mathrm{d}_{\mathrm{y}}{ }^{2}$	$\mathrm{~d}_{\mathrm{z}}{ }^{2}$	$\mathrm{~d}^{2}$
1	0.00	6.00	-3.0	0.0	9.0	0.0	9.0
2	6.00	6.00	3.0	0.0	9.0	0.0	9.0
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

project:					
location:					
client:					
EQUIPMENT ANCHORAGE-WALL MOUNTED					

EQUIPMENT ANCHORAGE-WALL MOUNTED
REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13
FASTENER FORCES: LOAD CASE 1: SEISMIC LOADING IN X-X DIRECTION + Z-Z DIRECTION

$$
\begin{aligned}
& M_{\mathrm{x}}=\left(\mathrm{F}_{\mathrm{v}}{ }^{*} E \mathrm{~L}_{\text {factor }}+\mathrm{W}_{\mathrm{p}}{ }^{*} \mathrm{DL}_{\text {factor }}\right) *-\mathrm{e}_{\mathrm{y}}=\begin{array}{cc}
\text { LRFD } & \text { ASD } \\
\mathrm{O} & \mathbf{0} \mathrm{Ib}^{*} \mathrm{in}
\end{array} \\
& M_{y}=\left(F_{v}{ }^{*} E L_{\text {factor }}+W_{p}{ }^{*} L_{\text {factor }}\right) * \mathrm{e}_{\mathrm{x}}+\left(\mathrm{F}_{\mathrm{h}}{ }^{*} E L_{\text {factor }}\right)^{*}-\mathrm{e}_{\mathrm{z}}=194.4 \quad 160.08 \mathrm{lb}{ }^{*} \text { in } \\
& M_{z}=\left(F_{\mathrm{h}}{ }^{*} E L_{\text {factor }}\right)^{*} \mathrm{e}_{\mathrm{y}}=0 \quad 0 \quad 0 \quad \mathrm{lb} * \text { in } \\
& \mathrm{T}_{\text {fastener }}=\mathrm{F}_{\mathrm{ph}}{ }^{*} \mathrm{EL}_{\text {factor }} /\left(\mathrm{m}^{*} n\right)+\mathrm{M}_{\mathrm{y}}{ }^{*} \mathrm{~d}_{\mathrm{z}} / I_{\mathrm{z}}-\mathrm{M}_{\mathrm{z}}{ }^{*} \mathrm{~d}_{\mathrm{y}} / \mathrm{I}_{\mathrm{y}} \quad \text { (negative tension indicates compression) } \\
& V_{y \text { fastener }}=-M_{x}{ }^{*} d_{z} / I_{p} \\
& \mathrm{~V}_{\mathrm{z} \text { fastener }}=\mathrm{M}_{\mathrm{x}}{ }^{*} \mathrm{~d}_{\mathrm{y}} / I_{\mathrm{p}}-\left(\mathrm{W}_{\mathrm{p}}{ }^{*} \mathrm{DL}_{\text {factor }}+\mathrm{F}_{\mathrm{pv}}{ }^{*} E \mathrm{~L}_{\text {factor }}\right) /\left(\mathrm{m}^{*} \mathrm{n}\right) \\
& \mathrm{V}_{\mathrm{r}}=\left(\mathrm{v}_{\mathrm{y}}{ }^{2}+\mathrm{V}_{\mathrm{z}}{ }^{2}\right)^{0.5}
\end{aligned}
$$

			LRFD LEVEL				ASD LEVEL			
Bolt \#	d_{y} (in)	d_{z} (in)	T (lbs)	V_{y} (lbs)	V_{z} (lbs)	V_{r} (Ibs)	T (lbs)	V_{y} (lbs)	$\mathrm{V}_{\mathbf{z}}$ (lbs)	V_{r} (Ibs)
1	-3	0	\#DIV/0!	0.00	-21.00	21.00	\#DIV/0!	0.00	-16.70	16.70
2	3	0	\#DIV/0!	0.00	-21.00	21.00	\#DIV/0!	0.00	-16.70	16.70
3										
4										
5										
20										

MAX LOAD CASE 1: (X-X LOADING)	LRFD			ASD	
					lbs
	Bolt 1	Shear (V)=	21.00 lbs	Shear (V)=	16.70 lbs

45 Fremont Street, 28th Floor
San Francisco, California 94105
(415) 989-1004 FAX (415) 989-1552

project:		
location:		
client:		
EQUIPMENT ANCHORAGE-WALL MOUNTED		

EQUIPMENT ANCHORAGE-WALL MOUNTED
REFERENCE: 2022 CBC, ASCE 7-16 Chapter 13
FASTENER FORCES: LOAD CASE 2: SEISMIC LOADING IN Y-Y DIRECTION + Z-Z DIRECTION

kpff
45 Fremont Street, 28th Floor San Francisco, CA 94105 415-989-1004 www.kpff.com

Max Weight = 135 lbs
per ASCE7-16 Table 13.6-1, plumbing
$\mathrm{ap}=1$
$R p=2.5$
Omega = 2
SDS = 1.2
$\mathrm{z} / \mathrm{h}=0.9$
Fp $=0.4 a p^{*} S D S * W p *(1+2 z / h) /(R p / l p)=0.53 W p$
$=72 \mathrm{lbs}$
$\mathrm{Fv}=0.2^{*} \mathrm{SDS}^{*} \mathrm{Wp}=32.4 \mathrm{lbs}$
Threaded Rod Tensile Strength:
$60 \mathrm{ksi} \times$ pi $\times(3 / 16)^{\wedge} 2=6.6$ kips >> 135lbs+32.4
lbs --> ok!
Withdrawal Check:
M_Fp = Fp*12" + (Wp + Fv $)^{*}{ }^{\prime \prime}{ }^{\prime \prime}=1200 \mathrm{lb}$-inch
T_Fp = $1200 \mathrm{lb}-\mathrm{in} / 3^{\prime \prime}=400 \mathrm{lbs}$ pull out
5/8" x $11 / 2$ " lag screw withdrawal capacity per
NDS Table $12.2 \mathrm{~A}=447$ per inch $\times 0.9$
$($ permanent load $)=402.6 \mathrm{lbs}>400 \mathrm{lbs}-->$ ok!

Shear Check:

$\mathrm{Vu}=135+33=168 \mathrm{lbs}$
$5 / 8$ " x $11 / 2$ " lag screw shear capacity per NDS
Table $12 \mathrm{~K}=440 \mathrm{lbs} \times 0.9 \times 0.5=198 \mathrm{lbs}-->$
ok!
Minimum end distance for C_delta $=0.5$ is 2D
= $2 \times 5 / 8^{\prime \prime}=1.25^{\prime \prime}<1.5^{\prime \prime}$

WIND LOADING ANALYSIS - Roof Components and Cladding

Per ASCE 7-16 Code for Bldgs. of Any Height with Gable Roof $\theta<=45^{\circ}$ or Monoslope Roof $\theta<=3^{\circ}$ Using Part 1 \& 3: (Chapter 30.3) for Low-Rise Buidings and (Chapter 30.5) for Buildings > 60 ft

Job Name:			Subject:
Job Number:			Originator:
Input Data:			
Wind Speed, V = Bldg. Classification = Exposure Category =	92	mph (Wind Map, Fig 26.5-1A-D)	
	II		
	C	(Sect. 26.7)	
Ridge Height, hr =	13.00	ft. (hr >= he)	
Eave Height, he =	10.75	ft. (he <= hr)	
Building Width $=$	22.50	ft. (Normal to Building	dge)
Building Length $=$	35.00	ft. (Parallel to Building	idge)
Roof Type =	Gable	(Gable or Monoslope)	
Topo. Factor, Kzt =	1.00	(Sect. 26.8 \& Figure 26	8-1)
Direct. Factor, Kd =	0.85	(Table 26.6-1)	
Gnd. Elev. Factor, $\mathrm{Ke}=$	1.00	(Table 26.9-1)	
Enclosed? (Y/N)	Y	(Sect. 28.6-1 \& Figure	.11-1)
Hurricane Region?	N		
Component Name $=$	Decking	(Purlin, Joist, Decking,	r Fastener)
Effective Area, $\mathrm{Ae}=$	16.875	ft.^2 (Area Tributary to	C\&C)
Overhangs? (Y/N)	Y	(if used, overhangs on	ll sides)

Resulting Parameters and Coefficients:

$\begin{aligned} & \text { Roof Angle, } \theta=11.31 \\ & \text { deg. } \\ & \text { Mean Roof Ht., } h=11.88 \text { ft. (h }\end{aligned}$
Roof External Pressure Coefficients, GCp:

GCp All Zones	0.48	(Fig. 30.3-2A, 30.3-2B, 30.3-2C, and 30.3-2D)
GCp Zone 1,2e (-) =	-2.50	(Fig. 30.3-2A, 30.3-2B, 30.3-2C, and 30.3-2D)
GCp Zone 2n,2r (-)	-3.26	Fig. 30.3-2A, 30.3-2B, 30.3-2C, and 30.3-2D)
GCp Zone 3e (-3.68	ig. 30.3-2A, 30.3-2B, 30.3-2C, and 30.3-2D)
GCp Zone 3	-4.15	Fig. 30.3-2A, 30.3-2B, 30.3-2C, and 30.3

Positive \& Negative Internal Pressure Coefficients, GCpi (Figure 26.11-1):

+GCpi Coef. $=$
-GCpi Coef. $=$
-0.18
(negative internal pressure)

If $z<=15$ then: $K z=2.01^{*}(15 / \mathrm{zg})^{\wedge}(2 / \alpha)$, If $z>15$ then: $K z=2.01^{*}(z / z g)^{\wedge}(2 / \alpha)$ (Table 30.3-1)

$\alpha=$	9.50	(Table 26.9-1)
zg $=$	900	(Table 26.9-1)
$\mathrm{Kh}=$	0.85	$(\mathrm{Kh}=\mathrm{Kz}$ evaluated at $\mathrm{z}=$

Velocity Pressure: qh $=0.00256^{*} K h^{*} K z t^{*} K d^{*} K e^{*} V^{\wedge} 2$ (Eq. 26.10-1)

$$
\mathrm{qh}=15.63 \mathrm{psf} \quad \mathrm{qh}=0.00256^{*} \mathrm{Kh}^{*} \mathrm{Kzt}^{*} \mathrm{Kd}^{*} \mathrm{Ke}^{*} \mathrm{~V}^{\wedge} 2(\mathrm{qz} \text { evaluated at } \mathrm{z}=\mathrm{h})
$$

Design Net External Wind Pressures (Sect. 30.3 \& 30.5):
For $\mathrm{h}<=60 \mathrm{ft} .: \mathrm{p}=\mathrm{qh}{ }^{*}((\mathrm{GCp})-(+/-\mathrm{GCpi}))(\mathrm{psf})$
For $h>60 \mathrm{ft}$: $\mathrm{p}=\mathrm{q}^{*}(\mathrm{GCp})-\mathrm{qi}^{*}(+/-\mathrm{GCpi})(\mathrm{psf})$
where: $q=q h$ for roof
qi $=$ qh for roof (conservatively assumed per Sect. 30.5)

Wind Load Tabulation for Roof Components \& Cladding								
Component	$\begin{gathered} \hline \mathrm{z} \\ (\mathrm{ft} .) \\ \hline \end{gathered}$	Kh	$\begin{gathered} \mathrm{qh} \\ (\mathrm{psf}) \end{gathered}$	$p=$ Net Design Pressures (psf)				
				All Zones (+)	Zone 1,2e (-)	Zone 2n,2r (-)	Zone 3e (-)	Zone 3r (-)
Decking For $z=h r$:	0.00	0.85	15.63	10.35	-41.90	-53.72	-60.31	-67.77
	13.00	0.85	15.63	10.35	-41.90	-53.72	-60.31	-67.77
$\begin{gathered} \text { For } z=\text { he: } \\ \text { For } z=h: \end{gathered}$	10.75	0.85	15.63	10.35	-41.90	-53.72	-60.31	-67.77
	11.88	0.85	15.63	10.35	-41.90	-53.72	-60.31	-67.77

Notes: 1. (+) and (-) signs signify wind pressures acting toward \& away from respective surfaces.
2. Width of Zone $1 \& 2$ (edge), ' $0.6^{*} a^{\prime}=$
3. Width of Zone 3 (corner), '0.6*a' \& '0.2*a'=

1.80	ft.
1.80	0.60

4. For monoslope roofs with $\theta<=3$ degrees, use Fig. 30.4-2A for 'GCp' values with 'qh'.
5. For buildings with $h>60$ ' and $\theta>10$ degrees, use Fig. 30.6-1 for 'GCpi' values with 'qh'.
6. For all buildings with overhangs, use Fig. 30.4-2B for 'GCp' values per Sect. 30.10.
7. If a parapet $>=3^{\prime}$ in height is provided around perimeter of roof with $\theta<=7$ degrees,

Negative Zone 3 shall be treated as Zone 2; Positive Zone 2 \& 3 shall be treated as Zone 4 \& 5
8. Per Code Section 30.2.2, the minimum wind load for $C \& C$ shall not be less than 16 psf.
9. References : a. ASCE 7-16, "Minimum Design Loads for Buildings and Other Structures".

FIGURE 1.3: No. 16 Gauge Standard Clip - Material Properties and Figures (Typical)

ZONE 3 r

Penetration Depth $=5 / 8 "$
Nominal Capacity at $3^{\prime}-0^{\prime \prime}$ spacing $=84.4$ psf
Penetration reduction factor $=0.625$
LRFD to ASD conversion $=1 / 0.4=2.5$
Actual capacity $=84.4 \times 0.625 \times 2.5=131.875 \mathrm{psf}$
Factored max wind demand $(3 \mathrm{r})=0.6 \times 67.77 \mathrm{psf}=$ 40.66 psf

Factor of Safety = 2
DCR $=40.66 \times 2 / 131.875<1$
Spacing 3' - 0" acceptable for zone 3 r.

All other zones:
Penetration Depth $=5 / 8^{\prime \prime}$
Nominal Capacity at $3^{\prime}-6 "$ spacing $=72.4$ psf
Penetration reduction factor $=0.625$
LRFD to ASD conversion $=1 / 0.4=2.5$
Actual capacity $=72.4 \times 0.625 \times 2.5=113.125 \mathrm{psf}$
Factored max wind demand $(3 \mathrm{r})=0.6 \times 60.31 \mathrm{psf}=36.2$ psf
Factor of Safety $=2$
DCR $=36.2 \times 2 / 131.875<1$
Spacing 3' ${ }^{\prime}$ 6" acceptable for zone 3 r.

Roof Components and Cladding:

Roof Zones for Buildings with $\mathrm{h}<=\mathbf{6 0} \mathrm{ft}$. (for Gable Roofs $<=45^{\circ}$ and Monoslope Roofs $<=3^{\circ}$)

Roof Zones for Buildings with $\mathrm{h}>60 \mathrm{ft}$. (for Roofs $<=7^{\circ}$)

Evaluation repori Number: 686

FIGURE1.6 - Series 300 - 0.040-inch and 0.050 -inch thick Aluminum:

TABLE 1.13-0.040-thick Aluminum Section Properties:
.040" Aluminum x 18" Panel Properties

Thickness	$0.040 \mathrm{in} .($ nom $)$	$\mathrm{Ix}($ top $)$	0.450 in 4	$\emptyset \mathrm{M}_{\mathrm{n}}$ (top)	4.02 k -in
Type	$3105-\mathrm{H} 25$	Ix (bot)	0.430 in 4	$\emptyset \mathrm{M}_{\mathrm{n}}$ (bot)	5.42 k -in
Width	$18 \mathrm{in}. \mathrm{(nom)}$			$\emptyset \mathrm{~V}_{\mathrm{n}}$	1.340 k
F_{y}	19 ksi				
E	$10,100 \mathrm{ksi}$				

For SI: 1 inch $=2.54 \mathrm{~mm} ; 1 \mathrm{ksi}=6.89 \mathrm{MPa} ; 1 \mathrm{kip}=1000 \mathrm{lbs}$.
Notes:

1. Section properties are calculated in accordance with the ADM1-2015, Aluminum Design Manual: Part 1-A Specification for Aluminum Structures.
2. The section properties also shall be used for the 0.050 -inch panels.
3. The 0.050 - and 0.040 -inch aluminum panel loads may be designed by a registered design professional using the Section Properties in Table 1.13 of this report.
4. E is the modulus of elasticity.
5. F_{y} is the yield strength.
6. I_{xe} is the effective moment of inertia about the cross-section about the x -axis.
7. M_{n} is the nominal bending strength.
8. V_{n} is the nominal shear strength.

Check Panel Strength:
Trib Width of Panel = Building Width / $2=22.5^{\prime} / 2=11.25^{\prime}$
$\mathrm{W}=66.8 \mathrm{psf} \times 11.25$ ' $=751.5 \mathrm{plf}$
$\mathrm{Mu}=\mathrm{WL} \wedge 2 / 8=751.5 \times(1.5)^{\wedge} 2 / 8=211 \mathrm{lbs}-\mathrm{ft}=2.5 \mathrm{kip}-\mathrm{in}<\mathrm{Mn}$ listed in Table 1.13 above $-->$ OK!

For clip capacity, see Table 1.16 in ER 686 shown below:
Allowed wind load $=141$ psf >> 66.7 psf
TABLE 1.16 - Clip Wind Negative (Uplift) Design Load:

	T1.16 Series su0 Panel/clip Wind Uplift Design Load, PSF										
	.040 ${ }^{\text {I }}$ or . $0500^{\text {" }}$ Aluminum with $18^{\text {II }}$ o.c. Seam Spacing										
	Standard 16 GA Clip Anchors										
	Clip Spacing (Span), Feet										
	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
Max. Design Load, PSF	44.8	55.5	66.2	77.0	87.7	98.4	109.1	119.8	130.6	141.3	152.0

For SI: 1 inch $=25.4 \mathrm{~mm} ; 1$ foot $=305 \mathrm{~mm} ; 1 \mathrm{psf}=47.9 \mathrm{~Pa}$

1. The wind uplift nominal strength has been determined according to the procedures of AISI S906, with a resistance factor, $\Phi=0.80$ in accordance with AISI S100-12 D6.2.1.
2. Design loads shown are factored loads for use with LRFD load combinations.
3. Intermediate design values have been determined based on linear interpolation between tested values based on Section 5.4.3.2 of EC0112019.
4. The allowable service load deflections for metal roof panels shall be taken as $\mathrm{L} / 60$.
5. Wind uplift design loads may be further limited by the design strength of the anchor fasteners into the roof substrate. The tests conducted in accordance with ASTM E1592, shown in this table, utilized two $1 / 4 "-14 \times 1.25 "$ HWH self-drilling tapping screws per anchor/ purlin connection. For other fastener types or roof substrates, the faster design strength shall be designed by the registered design professional.
6. Tables 1.1 and 1.2 of this report have been provided for the fastener design strength of a frequently used screw type into typical metal and wood roof substrates.
